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Abstract Transcranial electric stimulation aims to stimulate the brain by applying weak electrical

currents at the scalp. However, the magnitude and spatial distribution of electric fields in the

human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients

and estimated electric fields across the entire brain by leveraging calibrated current-flow models.

When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in

animal studies. When individual whole-head anatomy is considered, the predicted electric field

magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes.

Accurate models require adjustment of tissue conductivity values reported in the literature, but

accuracy is not improved when incorporating white matter anisotropy or different skull

compartments. This is the first study to validate and calibrate current-flow models with in vivo

intracranial recordings in humans, providing a solid foundation to target stimulation and interpret

clinical trials.

DOI: 10.7554/eLife.18834.001

Introduction
Transcranial electric stimulation (TES) delivers weak electric currents to the scalp with the goal of

modulating endogenous brain activity (Ruffini et al., 2013). Stimulation can be applied as constant

unidirectional current (tDCS) or biphasic alternating current (tACS). Weak constant direct currents

(tDCS, �2 mA) can elicit prolonged shifts in cortical excitability (Nitsche and Paulus, 2000,

2001; Nitsche et al., 2003). More recently weak alternating currents (tACS) have also been used in

an effort to entrain or modulate brain activity (Herrmann et al., 2013; Reato et al., 2013; Ali et al.,

2013; Alekseichuk et al., 2016; Lustenberger et al., 2016). Because of their simplicity, flexibility

and safety profile, these techniques have been investigated in over 70 neuropsychiatric conditions,

including major depression (Bikson et al., 2008), epilepsy (Fregni et al., 2006d;

Auvichayapat et al., 2013), tinnitus (Frank et al., 2012), Parkinson’s disease (Fregni et al., 2006b),

pain control (Fregni et al., 2006a, 2006c, 2007), and stroke rehabilitation (Schlaug et al., 2008;

Baker et al., 2010) among others. In healthy subjects tDCS may benefit declarative memory

(Marshall et al., 2004), working memory (Fregni et al., 2005), motor learning (Reis and Fritsch,

2011), verbal fluency (Pereira et al., 2013), and planning ability (Dockery et al., 2009).

Many clinical trials place stimulation electrodes on the scalp based on the assumption that the

‘active’ electrode will stimulate the underlying brain region with a uniform polarity and irrespective

of the placement of the ‘return’ electrode. Computational models of current flow have called this
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simplistic approach into question (Bikson et al., 2010). These models capture anatomical details

obtained with magnetic resonance imaging (MRI) to predict electric fields inside the brain. Models

have shown that the polarity of stimulation is necessarily mixed due to cortical folding. Furthermore,

nearby electrodes result in maximal electric fields between the two stimulation electrodes

(Datta et al., 2009), and not underneath the electrodes as commonly assumed. Detailed computa-

tional models also suggest that more focused stimulation (1 cm radius) of the cortex may be

achieved by using multiple smaller electrodes (Datta et al., 2008; Dmochowski et al., 2011;

Edwards et al., 2013). Finally, these models predict that cerebrospinal fluid (CSF) in the inter-hemi-

spheric and ventricular spaces could guide current to deep structures of the brain (Datta et al.,

2011; Senço et al., 2015).

Unfortunately, despite increasing sophistication in these computational models (Wagner et al.,

2004; Datta et al., 2009; Sadleir et al., 2010; Parazzini et al., 2011; Datta et al., 2012;

Minhas et al., 2012; Datta et al., 2010; Wagner et al., 2007; Datta et al., 2011;

Dmochowski et al., 2013; Luu et al., 2016), none of these model predictions have been directly val-

idated to-date. Early validation efforts for simple spherical models used ex vivo recordings

(Rush and Driscoll, 1968), surface recordings (Burger and Milaan, 1943) or in vivo recordings in

simian (Hayes, 1950). Modern models have compared predictions to human scalp surface record-

ings (Bangera et al., 2010; Datta et al., 2013), but detailed models have not been validated with

intracranial recordings in vivo. Furthermore, the models depend heavily on tissue conductivity values,

which have only been measured ex vivo in other animal species (Gabriel et al., 1996;

Baumann et al., 1997; Oostendorp et al., 2000; Peters et al., 2001; Hoekema et al., 2003). These

measures differ from in vivo measurements in humans obtained over half a century ago (Burger and

Milaan, 1943; Freygang and Landau, 1955).

As a result, there are substantial knowledge gaps in determining the electric fields realistically

achieved in the brain. This is of particular concern given that the present estimates (of at most 1 V/

m) are at the lower end of what is required to affect neuronal activity in animal experiments

(Reato et al., 2013). There is also no certainty as to whether the spatial distribution of electric field

intensities across the brain is sufficiently well predicted to warrant model-based targeting. Here we

aim to address these questions with in vivo intracranial recordings in humans by directly measuring

field intensities produced by TES at the cortical surface and deeper brain areas. We report results on

ten (10) patients undergoing invasive monitoring for epilepsy surgery, with subdural grids, strips,

and depth electrodes. In total we recorded from 1380 intracranial electrodes. These recordings are

then compared to various detailed computational models, including differential conductivity

between skull spongiosa and compacta, and white matter anisotropy. In doing so, we obtain cali-

brated models that conclusively answer outstanding questions about stimulation magnitudes, spatial

distribution, and modeling choices. For instance, we find that maximal electric field magnitudes are

approximately 0.8 V/m when using the generally accepted maximum of 2 mA scalp stimulation.

These low field intensities are below the levels typically used in animal studies providing a challenge

to future studies on the mechanisms of action of TES. To facilitate validation of new modeling

approaches we have made all relevant measurement data publicly available (at 10.6080/

K0XW4GQ1).

Results

Intracranial voltage recordings: linearity, frequency dependence,
stability
Transcranial sinusoidal alternating current was applied to ten patients through two electrodes placed

medially over the frontal and occipital pole (patients P03–P011 and P014, Figure 1). For one patient

(P014) electrodes were placed at three additional locations (Figure 2A). We first confirmed that

measured voltages increased linearly with current intensity (Figure 3A; up to saturation levels of the

clinical amplifiers). A modest drop in magnitude was observed with increasing frequency (25% at

100 Hz; Figure 3B), which we ascribe to a non-uniform gain across frequencies for the measurement

equipment and electrodes as confirmed with recording of voltages in saline. Thus, we observed uni-

form gain for the tissue indicating purely resistive medium in this frequency range. Repeated meas-

urements with fixed frequency but minutes of separation indicate the level of stability of recordings
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over time (Figure 3C). The observed drift in voltage magnitudes over time could have a number of

sources (Noury et al., 2016), most likely patient movement. Regardless, the variability observed

here sets the lower limit in precision one can expect to ±0.11 mV for 1 mA stimulation (standard

deviation pooled across electrodes and subjects; Figure 3C, values for P03). Subsequent recordings

were performed at 1 Hz and with stimulation current of 0.25 mA to 1 mA, limited by the dynamic

range of the clinical amplifier and patient sensation.

Measurements and predictions of electric field
Placement of the invasive recording electrodes was determined by clinical considerations. These

electrodes do not necessarily capture electric field magnitudes at the locations with maximal stimula-

tion intensities, nor will they be oriented to best capture the electric field in the orientation of the

field vectors. To estimate electric field magnitude and orientation across the brain we built for each

subject a realistic anatomical model of conductivity in the head (Figure 4) and calibrated the model

by matching measurements with the predicted electric fields (see ’Conductivity optimization’).

Recorded voltages and their distribution across the cortical surface are shown in Figure 5A/B for the

recorded data and the calibrated, realistic head models. Animated 3D rendering of these images (A-

C) are provided as supplementary material for all the subjects (rich media, see Figure 5—source

data 1). For this subject (P03) the measured voltages are tightly correlated across locations with the

predicted electric potential values. The same is true for all subjects resulting in high Pearson correla-

tion coefficients, r = 0.94 ± 0.04 (Here and in the following all summary statistics indicate mean and

standard deviation across subjects). To determine the electric fields at each electrode we calculated

the difference of the recorded voltages between neighboring electrodes divided by inter-electrode

distance (see ’Voltage and projected electric field measurements’). This provides a measure of the

local electric field along the direction of a given electrode pair in units of V/m, which we refer to as

the ‘projected electric field’. The measured and predicted values of this projected electric field are

shown for one subject in Figure 5E. As expected, the correlation of predicted and measured electric

fields is lower than for the raw potentials (here r = 0.86, p = 10�14, N = 45), as the calculated field is

the difference of two close-by measurements, each with some inherent noise. Similar results are

obtained for all ten subjects (r = 0.81 ± 0.09), suggesting that the spatial distribution of electric field

Figure 1. Location of the invasive recording electrodes and transcranial electrical stimulation electrodes in the 10 patients tested. Electrodes measuring

from the cortical surface (64-contact grids, 8-contact strips) are indicated as black dots and depth electrodes (between 6–8 contacts each) as red dots.

Square stimulation electrodes on scalp surface (2 cm), are shown in green with contact gel in red. Individual anatomy derived from the T1-weighted MRI

is transparent to visualize electrode locations.

DOI: 10.7554/eLife.18834.002

Huang et al. eLife 2017;6:e18834. DOI: 10.7554/eLife.18834 3 of 26

Tools and resources Neuroscience

http://dx.doi.org/10.7554/eLife.18834.002
http://dx.doi.org/10.7554/eLife.18834


magnitudes is well predicted by the models. When collapsing all recordings across subjects

(Figure 5F/G) we find correlation between measured and predicted field projections of r = 0.86 (p =

10�118, N = 405) and r = 0.88 (p = 10�54, N = 164) for cortical and depth electrodes respectively.

Note also that the measured field projections in depth electrodes are nearly as strong as in cortical

electrodes (Figure 5F vs. Figure 5G; standard deviation of measured field projections across elec-

trodes are 0.059 V/m and 0.065 V/m, respectively).

Estimated stimulation magnitude across the brain
Now that we have established the accuracy of the model predictions, we can estimate the electric

field magnitudes produced throughout the brain. We ask, in particular, what are the maximum inten-

sities achieved at the cortical surface and in deep brain regions? The electrode configuration used in

the experiments gives a range of values within and across individuals (Figure 2B). All values reported

Figure 2. Prediction of electric field with calibrated models for various electrode montages at 1 mA stimulation intensity. (B) Histogram of electric field

magnitude for the montage used on Subject P03 (same as in Figure 5) and Subject P014. (C) Corresponding spatial distributions on cortical surface. (D)

Cross-section plots showing predicted electric field intensity in mid-brain areas with hot spots underneath stimulation electrodes and adjacent to highly

conducting ventricles.

DOI: 10.7554/eLife.18834.003
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here and in Figure 2 are scaled to 1 mA of stimulation. As expected for distant electrodes

(Dmochowski et al., 2011; 2012), strongest electric fields are achieved under the stimulating elec-

trodes (e.g. under the occipital electrode, Figure 2C/D). Maximal field intensities for the mid-line

configuration (Figure 1) are 0.28 V/m ± 0.06 V/m across the ten subjects (Figure 6A). For an inten-

sity of 2 mA typically used in clinical trials this would result in fields of 0.56 V/m. For other stimulation

configurations on Subject P014 with electrodes away from the mid-line (Figure 2A, which is more

typical for clinical interventions), maximum intensity on cortex for 1 mA stimulation was 0.25 V/m

and 0.10 V/m at the fronto-lateral and lateral occipital locations respectively. We also model other

electrode configurations commonly used clinical trials, e.g., M1–SO (Figure 6A). For the three con-

figurations tested here, maximum field intensities in cortical locations was 0.38 V/m ± 0.09 V/m,

again for 1 mA. To provide a sense of what intensities are reached in more extended areas (not just

at the 1 mm3 voxel with largest value) Figure 6A also reports the 95th percentile (0.14 V/m ± 0.02

V/m), following previous practice (Parazzini et al., 2011; Alam et al., 2016).

To estimate a margin of error on these values, consider the spread of the measured values shown

in Figure 5E. For a given predicted electric field intensity, measurements vary by approximately 0.05

V/m. Maximal recorded values at intracranial electrode locations are about 50% of the maximal pre-

dicted values across the entire brain (compare Figure 5F with Figure 6A). Assuming that prediction

accuracy scales linearly with predicted electric field intensity, this suggests that prediction error for

maximal field intensities is in the order of 0.10 V/m.

The configuration with both stimulation electrodes on the mid-line (Figure 1) is particular in that

significant current is shunted through the highly conducting CSF in the inter-hemispheric fissure. As

a result, a relatively strong electric field may be produced in deep brain areas (e.g. peri-ventricular

white matter and anterior cingulate, see Figure 2D second row). By measuring distance from the

center of the brain ([0,0,0] in MNI coordinates) we can chart the dependence of electric field magni-

tude with depth for each location in the model brain (Figure 6B). The maximal values at a given

depth summarized for all subjects and montages indicate that deep brain areas may experience

electric fields that are comparable in magnitude to the cortical surface (Figure 6C, e.g.

Figure 3. Voltage recordings across multiple intracranial locations for sinusoidal transcranial alternating current stimulation for the first subject tested

(P03). Magnitude and sign are estimated by fitting a sinusoid to the voltage fluctuations at each electrode location. (A) Voltage recordings at multiple

intracranial recording locations are linear with stimulation intensity up to 1 mA in this subject (each curve represents a different electrode). At higher

intensities some channels saturate due to a limited dynamic range of the clinical recording equipment, which is demonstrated by the plateauing of

measured voltage at intensities above 1.5 mA. (B) Intensities are constant with frequency in the range of 1–10 Hz. The drop-off at higher frequencies is

due to the recording equipment. (C) Averaged measurements across three stimulation sessions (separated by approximately 1 min each) demonstrate

stability of electric field measurements across sessions. (Here stimulation was 1 Hz and between 0.5–1 mA in stimulation current. The voltage values are

calibrated to correspond to 1 mA stimulation). Error bars at each electrode indicate the variability across different stimulation blocks.

DOI: 10.7554/eLife.18834.004
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approximately midway between the center of the brain and the cortical surface (normalized distance

0.25) field magnitude were 0.21 ± 0.04 V/m for these 10 subjects with the mid-line montage).

Model calibration
In this and the following section we use the empirical voltage measurements to assess the validity of

various modeling choices commonly used in the literature. First, conductivity values reported in the

literature used in existing models appear to give similar estimate of the electric field magnitudes

(see values in ’Conductivity optimization’). For example, measured electric field magnitudes in Sub-

ject P03 were close to the predicted values, as indicated by the slope s = 0.72 of the best linear fit

of the measured versus predicted field projections shown in Figure 7B. This is true for all subjects

(for voltage: s = 0.83 ± 0.24; for field: s = 0.68 ± 0.21. Figure 8C/D under ‘literature’). The conductiv-

ity values typically used in the literature appear to correctly estimate the amount of current that

crosses the skull and the amount shunted through the scalp. We calibrated the models by adjusting

conductivity values for each individual model with the goal of minimizing the mean square error

between predicted and measured field projections (see ’Conductivity optimization’; example of a

Figure 4. Example of realistic model for Subject P06. Each patient’s detailed anatomy was obtained by segmenting T1-weighted MR images into six

tissue types: scalp, skull, CSF, gray matter, white matter, and air. Additionally, to capture the surgical details we modeled the craniotomy, cortical strips

and depth electrodes as well as the subgaleal electrodes. Finite element models were built and solved to compute voltages and electric fields

throughout the head. (A) Scalp, with stimulating pad electrode; configuration used here is the same as shown in Figure 1. (B) Skull, note the Jackson-

Pratt Drain (blue), the subgaleal electrodes (green) and the craniotomy. (C) CSF, with the geometry of intracranial electrode strips. Craniotomy site was

assumed to be filled with CSF. (D) Gray matter. (E) White matter. (F) Air cavities. (G) Spongy bone inside the skull. (H) Diffusion tensor distribution in

one brain slice.

DOI: 10.7554/eLife.18834.005
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best fit for P03 is shown in Figure 5E). The best fitted conductivity values vary across individuals

(Figure 8E–G). Generally the fitting procedure showed that the parameters are not tightly bounded

by the data. We estimated the uncertainty of the optimal conductivities by analyzing the sensitivity

of the fitting criterion to small changes in these parameters (see ’Conductivity optimization’ and Fig-

ure 8—figure supplement 1).

The median of the optimal conductivities are 0.03 ± 0.01 S/m for bone, 0.29 ± 0.10 S/m for skin,

0.38 ± 0.05 S/m for white matter and 0.82 S/m for gray matter (Figure 8E–G; ± indicates the median

Figure 5. Voltage and electric field for measurements and model. All values are calibrated to 1 mA stimulation. (A) False-color representation of

measured voltages for patient P03. (B) Voltages from the corresponding individualized model across the cortical surface. (C) Absolute voltage

difference between recording and model predictions. (D) Comparison of recorded voltages with values predicted by the individualized model for P03.

Each point in the scatter plot represents an intracranial electrode as shown in (A), with black indicating cortical surface electrodes and red representing

depth electrodes (mostly targeting hippocampus). (E) Projected electric field is measured in the direction of nearby electrodes (pairs connected by blue

lines in (D)), and is calculated as the voltage difference divided by the distance between the two electrodes. Error bar at each point indicates the

standard variation of the measured electric field at the corresponding electrode as shown in Figure 3C). (F) Projected electric field for cortical surface

recordings and corresponding model predictions combining all the subjects. (G) Same as (F) showing all the depth electrodes.

DOI: 10.7554/eLife.18834.006

The following source data is available for figure 5:

Source data 1. Animated 3D renderings of the recorded and model-predicted voltages for each subject, and the absolute difference between the two.

DOI: 10.7554/eLife.18834.007
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of the estimation uncertainty across subjects). These differ from the literature values (bone: 0.01 S/

m; skin: 0.465 S/m; white: 0.126 S/m; gray: 0.276 S/m), but are largely in the same proportions. Dur-

ing optimization CSF was kept constant at 1.65 S/m. Compared to models using literature conductiv-

ities, the models with median values across subjects give significantly better accuracy in terms of

predicting the electric field distribution (pairwise t-test: t(12) = 2.36, p = 0.04, Figure 8B), but the

magnitude is not significantly different (t(12) = 1.51, p = 0.16, Figure 8D). Note that for magnitude,

the t-test was performed on the absolute distance of slope s to slope of 1.

Relative merit of various model refinements
Since the introduction of detailed anatomical models at 1 mm3 resolution (Datta et al., 2009) there

have been significant efforts to improve computational current-flow models by including additional

tissue compartments (i.e. CSF, bone layers, and white matter). However, there is an ongoing debate

as to the relative merits of each of these model refinements (see ’Guidelines for modeling’). To pro-

vide some guidelines to future modeling efforts we built models incorporating various refinements

proposed in the literature (Figure 9) and compared model predictions to the empirical data in terms

of the spatial distribution of projected electric fields (correlation metric reported in Figure 8B). To

test whether individual anatomy is important for current-flow modeling, we compared recordings

from one subject to predictions from other subjects. Specifically, for each subject (e.g. P03), the

recordings were compared to model predictions obtained from other subjects (e.g. P04–P014) at

co-registered electrodes locations. This was done for all the 10 subjects, each one comparing with

the other 9 (a total of 90 comparisons). Correlation of recordings with these predictions using a dif-

ferent head model is significantly worse as compared to predicting values from the correct individual

model (t-test on the difference between correlations: t(89) = 5.60, p = 10�7). This confirms that

Figure 6. Electric field predicted with individually calibrated models under 1 mA stimulation. (A) Summary of electric field magnitudes for all subjects.

The four different configurations of stimulation electrodes in Subject P014 are indicated as P014A–P014D. Also shown are values for a few stimulation

montages commonly used in clinical trials simulated for Subject P03 (M1–SO, C3–C4, Cz–Oz). Whiskers indicate the maximal and minimal values of

electric field magnitudes observed across the entire brain, and box indicates the 5% and 95% percentile across locations. Line inside the box indicates

median value. (B) Electric field magnitudes as a function of depth, measured as the distance from the origin of the MNI coordinate system and

normalized by diameter of the brain. Maximal field value is achieved at the cortical surface, which is approximately at distance of 0.55 (distance was

divided by brain diameter in each MNI dimension). Locations exceeding 0.55 indicate mostly brain stem and cerebellum. Maximal value for each depth

is indicated in green. (C) Summary of maximum for each of the 10 subjects and montages shown in (A) as a function of depth.

DOI: 10.7554/eLife.18834.008
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modeling individual anatomy is important. Many have argued that it is important to incorporate the

entire head anatomy down to the neck. Since the MRI of most patients is truncated at the base of

the skull, we extended the field of view (FOV) using a standard head that captures the average anat-

omy of the lower head (see ’General procedure’). This extended FOV gives significantly better pre-

dictions as compared to the original FOV, in terms of the electric field magnitudes (t(10) = 6.17, p =

10-4) and electric field distributions (t(10) = 2.63, p = 0.03; Figure 9B, comparing RMcut vs. RM).

Note that P04 and P06 were not included in this comparison as the FOV on these two subjects could

not be extended (see ’General procedure’). We next tested the importance of CSF by removing the

CSF compartment from the intact model – a model capturing the individual anatomy prior to craniot-

omy and electrode implantation. This did not significantly affect the distribution of estimated electric

fields (Figure 9B, comparing correlations for IM vs. IM-CSF, t(12) = 1.78, p = 0.10), but did deterio-

rate the accuracy in predicting the magnitude of electric fields (comparing slopes, t(12) = 4.39, p =

10�4). Incorporating heterogeneous conductivities for various bone compartments does not appear

to provide a reliable improvement on magnitude estimates (RM vs. RM + 3skull: t(12) = 1.72, p =

0.11), and it seems to give worse prediction on the electric field distribution (Figure 9B, RM vs. RM

+ 3skull: t(12) = 2.35, p = 0.04). For some patients we had diffusion tensor imaging (DTI) data avail-

able (P06, P07 and P09). Previous modeling studies have advocated including such data to capture

anisotropic conductivities. Figure 9 shows the result of incorporating DTI information to the realistic

model (RM+DTI) including different ways of converting DTI information into conductivity (RM+DTI/

VN, RM+DTI/VC, RM+DTI/EIT; see ’Model categories’ and Table 1). Three data points are not suffi-

cient for a statistical comparison, but there does not appear to be an obvious advantage to using

DTI. Note that all model comparisons were performed using the same fixed conductivity values

(from the literature) to avoid biasing the comparisons with optimized parameters. Additionally,

model comparisons focused on the accuracy of the spatial distributions, as captured by the correla-

tion values, as they are not strongly impacted by the specific choice of conductivities (Figure 8A/B).

Discussion
We set out to conclusively answer questions related to the electric field intensities that can be

achieved in the human brain in vivo with transcranial electric stimulation. We also tested whether

Figure 7. Comparison of recorded values with model predictions using literature conductivity values for Subject

P03 scaled to 1 mA. Points falling on the dashed blue line represent perfect prediction (slope s = 1). The literature

values gives close estimates of electric field magnitude (measurements are 72% of predicted values, s = 0.72,

green line). Skin, skull and brain conductivities are optimized to minimize prediction error for field projections (i.e.

minimize mean square distance from dashed line in panel (B)) which corrects this magnitude mismatch, and is

shown in Figure 5E.

DOI: 10.7554/eLife.18834.009
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computational current-flow models accurately predict spatial distributions of electric fields, and

which modeling choices are most warranted. Our main finding is that the intensities of electric field

reach 0.8 V/m when using 2 mA transcranially. This is close to previous predictions using computa-

tional models (Datta et al., 2009). Peak intensities are achieved underneath the stimulation electro-

des, but also in deep midline structures such as the anterior cingulate and the peri-ventricular white

matter for the specific configurations tested here. We calibrated models by adjusting skull, scalp

and brain conductivity in individual subjects to provide correct electric field magnitudes. We find

that individualized models provide predictions of the spatial distribution of currents with an accuracy

of r = 0.86 for cortical electrodes and r = 0.88 for depth electrodes when pooling data across all

Figure 8. Prediction accuracy for models using various conductivity choices. (A, B) Correlation indicates the accuracy of the spatial distribution. (C, D)

Slope indicates the accuracy of the magnitude estimate. Results are shown for three categories of models: models using literature conductivities

(literature), models using individually optimized conductivities for skull, scalp and brain to provide best fit to the measured electric fields in each subject

(optimal), and models with the median of the optimal conductivities (median of P03–P011 and P014). Each subject is represented by a different symbol

as indicated by the legend on the bottom of the figure. P014A–P014D represent the four different configurations of stimulation electrodes in P014.

Panels (E) – (G) summarize different optimal conductivities for different individuals.

DOI: 10.7554/eLife.18834.010

The following figure supplement is available for figure 8:

Figure supplement 1. Estimation of the sensitivity of the fitting procedure to small variations in the conductivity values.

DOI: 10.7554/eLife.18834.011
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subjects. These models capture individual anatomy for brain, CSF, skull, air cavities and skin at

1 mm3 resolution. Including details such as anisotropic white matter and inhomogeneous bone com-

partments does not improve prediction performance. However, extending the FOV to include the

entire head and neck significantly improves prediction accuracy.

Figure 9. Performance of various modeling approaches. IM-CSF: This ‘intact model’ is based on the pre-surgical MRI and does not include craniotomy,

recording electrodes, etc., and does not model CSF either; IM: intact model including CSF; RMcut: realistic model with all details as shown in

Figure 4A–F, but truncated at the bottom of the skull due to the limited FOV of the clinical MRI scans; RM: realistic model with an extended FOV

including the lower head and neck based on a standard head model; RM + 3skull: realistic model including 3-compartment skull as shown in

Figure 4G; RM+DTI: realistic model including DTI as shown in Figure 4H. Four different ways to convert DTI ellipsoids into estimated anisotropic

conductivity values were tested: direct method (DTI), volume normalized (DTI/VN), volume constrained (DTI/VC), and equivalent isotropic trace (DTI/

EIT). What is demonstrated is that truncated head models may deteriorate prediction accuracy, and models accounting for CSF, multiple skull

compartments or white matter tracts do not significantly improve model accuracy.

DOI: 10.7554/eLife.18834.012

Table 1. Models with different complexities

Model Details Abbreviation

intact model without CSF gray, white, skull, scalp, air, stim electrodes IM-CSF

intact model gray, white, CSF, skull, scalp, air, stim electrodes IM

realistic model intact model with craniotomy and surgical instrument RM

realistic model with limited FOV same as realistic model except truncated at the bottom of the skull RMcut

realistic model with inhomogeneous skull skull is modeled as 3-layered structure RM + 3skull

realistic model with anisotropic brain derived from DTI data direct mapping RM+DTI

volume normalized RM+DTI/VN

volume constrained RM+DTI/VC

equivalent isotropic trace RM+DTI/EIT

DOI: 10.7554/eLife.18834.013
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Stimulation intensity
There is much debate as to whether electric fields in the brain with transcranial electric stimulation at

conventional current intensities (�2 mA) are strong enough to have a physiological effect. Our study

provide a definitive answer to the question of what field intensities can be achieved in human in

vivo. Maximal stimulation intensity is difficult to measure directly because the recording electrodes

are placed based on clinical considerations, and are thus not arranged where maximal intensities are

expected. Subdural electrodes allow measurement of the electric field only tangentially to the corti-

cal surface, whereas strongest field magnitudes underneath the stimulating electrodes are oriented

orthogonally to the cortical surface. We thus used the validated and calibrated computational model

to estimate the maximal electric field that can be achieved anywhere in the brain. Electric field mag-

nitudes in cortex can be as high as 0.4 V/m for 1 mA stimulation current. For typical electrode con-

figurations used in clinical trials maximal field intensity can reach 0.8 V/m when applying 2 mA. More

extended areas can reach a value of 0.28 V/m (95th percentile) under 2 mA stimulation. For some

electrode montages, current is shunted into deeper areas through highly conductive CSF with maxi-

mal values reaching 0.21 V/m. The present data is broadly in agreement with previous modeling esti-

mates with maximal intensities around 1 V/m (e.g., Datta et al., 2009) and 95th percentile of 0.35 V/

m (e.g., Datta et al., 2012). While physiological effects in vitro have been found for electric fields as

low as 0.2 V/m (for entrainment of coherent gamma oscillations (Reato et al., 2010), other effects

have required electric fields of at least 5 V/m (to entrain up/down state transitions (Fröhlich and

McCormick, 2010); see Reato et al. (2013) for review on AC effects in vitro). Plasticity effects have

been demonstrated only at higher field intensities of ~20 V/m (Ranieri et al., 2012; Kronberg et al.,

2017). It is possible that network effects amplify electric field effects (Reato et al., 2010) and that

larger neurons will be more strongly polarized (Radman et al., 2009) and thus, in vivo effects in

human may be stronger than the effects demonstrated for animal in vitro experiments. Future in vivo

animal work may shed light on this fundamental question of the required electric field intensities for

various physiological effects (e.g., Kar and Krekelberg, 2016).

A recent study has reported the electric field produced by TES as measured by stereotactic EEG

electrodes in two epilepsy surgical patients (Opitz et al., 2016). While the study does not leverage

or evaluate accuracy of computational models, it does estimate maximal electric field to be 0.5 V/m

with 1 mA TES. This closely approximates the intensity estimated from our current data (0.4 V/m for

1 mA stimulation). These results are in remarkably close agreement if one considers the differing

placement of the stimulation electrodes. We made the deliberate choice of placing electrodes away

from the surgical craniotomy to minimize current flow through the highly conducting skull defect.

Previous modeling work suggests that electric field estimates do not significantly differ from those

for normal anatomy when stimulating electrodes are distant from the skull defect (Datta et al.,

2010). We confirmed this in our models, which show only minimal differences in field estimates

when modeling the craniotomy as highly conducting CSF (in practice it is largely fluid-filled) versus

entirely resistive (air filled). However, when electrodes are directly placed over the skull opening, as

in Opitz et al. (2016), one expects larger electric field intensities than normal as current flows

directly into the skull. We thus feel that our estimate is closer to what one may expect in normal skull

anatomy. Opitz et al. (2016) also measured voltages for different stimulation frequencies and found

a 10% drop in voltage recording between 1–100 Hz. In our equipment we find a 25% drop which we

attribute to a non-uniform gain of the equipment (in saline we measured a gain difference of 25%

between 1 Hz and 100 Hz).

Model validation
Early pioneering work attempted to validate spherical head models with measurements from a

human half-skull suspended in a head-shaped receptacle filled with saline (Rush and Driscoll, 1968).

Predictions of the spherical model were also compared to in vivo recordings from a monkey brain

(Hayes, 1950), and scalp measurements in human (Burger and Milaan, 1943). In Datta et al. (2013)

we compared an anatomically detailed model of a human head (of 1 mm3 resolution) with voltages

recorded on the scalp surface. But extrapolating the accuracy of model predictions from the scalp

surface to the brain is problematic given the ambiguity as to the amount of current entering the

skull. There are other indirect efforts to validate models by comparing them to the physiological

effects, for instance, motor threshold in vivo in simian (Lee et al., 2015) and human (Edwards et al.,
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2013; Opitz et al., 2013). Bangera et al. (2010) performed in vivo intracranial recordings from

human, but the data were used to better predict EEG surface recordings, not for calibrating models

of electric field with transcranial current stimulation. The most recent studies (Opitz et al., 2016;

Koessler et al., 2016) involve similar in vivo intracranial recordings on human subjects and monkeys,

but they do not provide a comparison and validation of current-flow models.

Accuracy of the models was assessed here in terms of the spatial distribution and the overall

magnitude. Accuracy in magnitude was measured as the fraction between measured and predicted

values (slope of a linear fit). After calibrating the models the overall magnitudes of electric field were

predicted with a single set of parameters across all subjects without a bias (s = 0.84 ± 0.31). Accu-

racy of the spatial distribution was measured as the correlation of measured and predicted values

across recording locations. The individualized models at 1 mm3 resolution provide predictions that

correlated with measured electric field intensities (r = 0.81 ± 0.09) across the ten subjects

(Figure 8B). These numbers include optimization of conductivities to best match the recordings and

may thus be overly optimistic. However, this bias is small as correlation is only minimally affected by

the specific choice of conductivities. Indeed, when using a single set of values (median) we find simi-

lar performance (r = 0.78 ± 0.10). Estimating spatial distribution of field magnitudes is important if

one intends to use models to select the best electrode configuration to stimulate a particular brain

region (Dmochowski et al., 2011; Ruffini et al., 2014; Guler et al., 2016). Many clinical trials and

cognitive neuroscience experiments with TES aim to target a specific brain region, and many of the

inferences that are drawn from such trials are predicated on having an accurate understanding of

which areas are maximally stimulated, what polarity the stimulation has in specific sulci, and which

areas are not significantly affected with a specific electrode montage.

Guidelines for modeling
Current-flow modeling approaches range from spherical models (Rush and Driscoll, 1969;

Ferdjallah et al., 1996; Stecker, 2005; Miranda et al., 2006; Datta et al., 2008;

Dmochowski et al., 2012) to more realistic individualized models derived from MRI (Wagner et al.,

2004; Datta et al., 2009; Sadleir et al., 2010; Parazzini et al., 2011; Minhas et al., 2012;

Datta et al., 2010; Wagner et al., 2007). Individualized modeling implies the need to consider the

anatomy of individual subjects (Datta et al., 2011; 2012), in particular for patient populations that

may have abnormal brain anatomy (Datta et al., 2011; Dmochowski et al., 2013). Various teams

have also worked on automating segmentation and modeling for this purpose (Acar and Makeig,

2010; Windhoff et al., 2013; Dannhauer et al., 2012; Huang et al., 2013; Huang and Parra, 2015;

Thielscher et al., 2015). We confirmed on the present data that modeling individualized anatomy

indeed is beneficial in correctly predicting electric field distribution across space. Clinical MRI scans

are routinely truncated at the base of the skull limiting the FOV that is available for modeling. By

extending FOV with a standard head to capture the anatomy down to the neck we demonstrated

that capturing current flows through the entire head significantly improved the modeling results.

While most studies argue that the CSF and fluid-filled ventricles should be included in models

(Vorwerk et al., 2014; Wagner et al., 2014; Opitz et al., 2015), others have argued that conven-

tional 1 mm3 MRI resolution cannot measure CSF space accurately and thus, it can be omitted

(Im et al., 2008; Park et al., 2011; Jung et al., 2013). Our results indicate that including CSF into

the model is important for correctly predicting the magnitude of achieved electric field in the brain.

Other model refinements aim to capture the heterogeneous skull layers (Sadleir and Argibay,

2007; Dannhauer et al., 2011; Suh et al., 2012; Rampersad et al., 2013; Wagner et al., 2014).

Wagner et al. (2014) argues that modeling the skull as multiple compartments only has a meaning-

ful effect when there is significant volume of cancelous bone along the current path. A complicating

factor is that present segmentation algorithms do not automatically extract cancelous bone, making

this modeling particularly labor intensive. In our results, manually segmenting a second bone com-

partment to account for cancelous bone did not significantly improve results. In addition, some have

aimed to incorporate anisotropic conductivities using DTI data (Windhoff et al., 2013; Suh et al.,

2012; Rampersad et al., 2013; Wagner et al., 2014). We could not evaluate the benefits of DTI

modeling statistically, as we had only three subjects with DTI data. But for these three subjects there

was no obvious benefit from adding DTI. This is consistent with previous modeling (Wagner et al.,

2014), which shows limited effects of DTI-derived anisotropy on the estimates of electric field in cor-

tex (most of our electrodes were in cortex). Additionally, there have been debates as to how exactly
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the diffusion anisotropy (as measured with DTI) should be converted into anisotropy of the electrical

conductivity (Shahid et al., 2013). In fact, the most recent in vivo recordings in humans suggest that

white-matter electrical conductivity may actually be isotropic (Koessler et al., 2016), at least when

measured at 50 kHz. Here we evaluated the various approaches proposed in the literature, and

found no obvious performance difference between them.

The overall correlation of predicted and measured fields is 0.86 for cortical electrodes, and 0.88

for depth electrodes (Figure 5F/G). This indicates that despite our best efforts, there evidently

remain some model inaccuracies. Simplifying tissue to have uniform conductivity is certainly a source

of inaccuracy. Improving on this may require improvements in electrical impedance tomography. A

source of uncertainty in our experiment is the placement of the stimulating electrodes. We know

that small differences in placement significantly affect model predictions, yet the placement could

not be conclusively established as the posterior electrode was occluded by bandages and we there-

fore only have rough anatomical landmarks that guided the placement. Future efforts may want to

establish exact electrode placement using 3D localization devices. Other inaccuracies in the model-

ing may result from errors in segmentation, in particular thin structures such as CSF or temporal

bone, which are in some locations below the 1 mm3 resolution of the model. Finally, openings in the

eye socket such as optical foramen and orbital fissure are hard to establish and could serve to guide

significant current for the present electrode montages. The models we tested here did not incorpo-

rate all the details that could conceivably affect current flow, and indeed, model accuracy could

hopefully be improved from the currently reported values by adding such details. For instance, fatty

tissue has been modeled by Truong et al. (2013), who suggested that electric fields are altered in

particular for obese individuals. Other details that may be important are muscle, arteries, sub-com-

partments of the eyes, and other anatomical details (Sadleir et al., 2010; Parazzini et al., 2011;

Mekonnen et al., 2012). A general sense for the sensitivity of the model accuracy to errors in seg-

mentation can be obtained by comparing the prediction performance of the intact models and the

realistic models (IM vs. RM in Figure 9). Despite multiple refinements to the segmentation in RM,

there was no consistent performance improvement across subjects. To allow for further testing of

such refinements we have made the MRIs and recorded voltage values freely available to the public

(at 10.6080/K0XW4GQ1).

Electrical conductivity values of human tissues
Another conundrum in TES modeling is the electrical conductivities of the tissues used for modeling.

Values commonly used in the literature are in fact the mean values across multiple references

(Wagner et al., 2004). These conductivities are mostly measured at 10 Hz or higher frequencies

(Gabriel et al., 1996; Baumann et al., 1997; Oostendorp et al., 2000; Peters et al., 2001;

Hoekema et al., 2003). To date the data for the human head measured in vivo under direct current

(0 Hz) are rather scarce and date back over sixty years (Burger and Milaan, 1943; Freygang and

Landau, 1955). Just very recently new in vivo measures became available (Koessler et al., 2016)

largely confirming the literature values for brain tissue, although these were measured at 50 kHz.

Whether these literature values provide correct estimates of electric field magnitude in computa-

tional models of the human head has never been directly evaluated in vivo. Here we took a phenom-

enological approach and adjusted the conductivity of scalp, skull and brain to match the recorded

fields at 1 Hz. The obtained conductivities are ‘optimal’ in the sense that they best calibrate the

resulting electric field intensities inside the brain. Generally, the model fitting appears to be under-

constrained as differing parameters gave similar goodness of fit (Figure 8B). We thus constrained

the optimization to only three free parameters. The main goal of optimization was to allow some

flexibility for the model to more accurately reflect the overall field magnitudes, which were incor-

rectly predicted by the conductivity values from the literature. The ‘optimal’ conductivities thus pri-

marily serve to calibrate, on individual heads, the overall magnitude estimates. Once calibrated,

these models were then used to estimate maximal field intensities in each head. However, we cau-

tion against interpreting these ‘optimal’ conductivity values as the true conductivity values of tissue.

These best-fit conductivity values are free to account and compensate as best as possible for all

sources of modeling simplifications and errors. For instance, the best conductivity obtained for ‘skin’

has to account for the value of many different soft tissues such as muscle, fat and nerves. This is also

true for the skull conductivity, which has to reflect in a single number, different bone layers, which

will vary in relative abundance across and within individuals. Also, the optimal conductivities may

Huang et al. eLife 2017;6:e18834. DOI: 10.7554/eLife.18834 14 of 26

Tools and resources Neuroscience

http://dx.doi.org/10.6080/K0XW4GQ1
http://dx.doi.org/10.7554/eLife.18834


depend on the location of the stimulation electrodes, segmentation errors, and other modeling

choices. Thus, ‘optimal’ values differ considerably across subjects. Nonetheless, the median values

we report here appear to be a good compromise for predicting field distributions when individual

calibration is not possible.

To provide a sense of how sensitive model predictions are to choices of the conductivity value we

computed the estimation accuracy for the best-fit values. The optimization criterion is fairly narrow

around these values with estimation margins for skull, scalp, and white matter conductivities of one

tenth to one quarter around the optimal values (Figure 8—figure supplement 1A–C). The model

also appears to be sensitive to gray matter conductivity with a 10% change in accuracy for a 10%

change in conductivity values. It is important to note that the model fitting process is strongly

affected by the electric field magnitude, which is approximately inversely proportional to conductiv-

ity values. On the other hand, the spatial distribution of the predicted electric field is much less

affected by the detailed choice of conductivities. Thus, it may not be surprising that optimal values

differ across subjects by as much as one order of magnitude, yet a single median value provides rea-

sonable accuracy in terms of spatial distributions across all subjects (Figure 8B).

Distribution and stability of field measurements
For the purpose of targeting, the most important aspect of modeling is not the overall magnitude of

electric fields but rather their spatial distribution. Targeting aims to select the electrode configura-

tion that achieves highest intensity in one location while perhaps minimizing stimulation intensity

elsewhere in the brain (Dmochowski et al., 2011; Ruffini et al., 2014; Guler et al., 2016). We

attempted to provide error bars on the estimated electric fields by comparing repeated measures

over an interval of approximately 15–30 min. We found relatively little variation in the voltage meas-

urements (±0.11 mV, e.g., Figure 3C), and note that the variations we did observe were likely due to

subject movement. Recent evidence and our own observations confirm that voltage measurements

depend sensitively on subject position and even blood pulse (Noury et al., 2016). Both phenomena

are readily explained by the shunting effect of the highly conducting CSF. Small variations with sub-

ject position have been demonstrated to affect the thickness of CSF layer and thus modulate the

current flow between brain and scalp (Rice et al., 2013). Therefore, the variability of electric fields

estimated here (with relatively quiescent subjects) likely underestimates the true variability occurring

in practice. We conclude that with r = 0.78 ± 0.10 the spatial distribution of electric field predicted

by computational models is likely not far from the actual field distributions when taking into account

their inherent variability across time, due to subject motion, position, blood pressure, electrode con-

tact, etc. In this sense, the present study suggests that the current high-resolution model is a good

foundation in order to select among different possible electrode configurations, and that model pre-

dictions with regard to stimulation focality are meaningful.

Materials and methods

Human subjects and intracranial recording setup
This study was performed in epilepsy patients undergoing surgical evaluation with intracranial EEG

electrodes at New York University Medical Center (NYUMC). This protocol was approved by the

NYUMC Institutional Review Board (IRB) and all patients provided written informed consent as indi-

cated by the IRB. Eligible subjects were approached and consented generally within 24 hr prior to or

after surgery (by author AL). We enrolled 12 subjects between December 2013 to June 2016 (P03–

P014). Patients had to be over 18 years old, fluent in English, and able to provide informed consent

or have an eligible consenting adult readily available. Subjects were excluded for cognitive

impairment (IQ<70), a space-occupying intracranial lesion, frequent electro-clinical seizures in the 24

hr immediately after surgery (P012), and incomplete data (P013). Therefore, we have included 10

subjects in this paper (P03–P011, P014).

Voltages were recorded from implanted subdural electrodes (Ad-Tech Medical Instrument,

Racine, WI) – the same electrodes used for intracranial EEG recordings. Electrodes were arranged as

grid arrays (8 � 8 contacts), linear strips (1 � 8 or 12 contacts), or depth electrodes (1 � 8 or 12 con-

tacts), or some combination thereof. Intracranial EEG signals were referenced to a two-contact sub-

galeal strip facing towards the skull near the craniotomy site. A similar two-contact strip screwed to
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the skull was used for the instrument ground. Grid arrays and strips made from stainless steel and

embedded in silastic sheets were implanted on the cortex. They have 2.3 mm diameter contacts

with 10 mm center-center spacing. Depth electrodes made from platinum-iridium are inserted deep

into the brain (around hippocampus). They have 2.4 mm contact length with 5 mm spacing. The

decision to implant, electrode targeting, and the duration of invasive monitoring were determined

solely on clinical grounds and without reference to this study. Subdural electrodes covered extensive

portions of lateral and medial frontal, parietal, occipital, and temporal cortex of the left and/or right

hemisphere (see Figure 1). In total we recorded from 1380 intracranial electrodes: P03 (124), P04

(124), P05 (124), P06 (124), P07 (80), P08 (120), P09 (250), P010 (124), P011 (118), P014 (192).

Recordings from grid, strip and depth electrode arrays were made using a NicoletOne C64 clinical

amplifier (Natus Neurologics, Middleton, WI), bandpass filtered from 0.16–250 Hz and digitized at

512 Hz. The input impedance of the amplifier is above 100 MOhm, and electrode impedance was

kept below 75 kOhm during the recordings. Variation in impedance of up to 50 kOhm across elec-

trodes would contribute at most 0.05 percent error in the voltage measurements. Voltage variations

due to varying impedance across electrodes are therefore negligible given other sources of varia-

tion, predominantly movement leading to altered current paths and transient noise.

An hour of the patients intracranial EEG recording prior to stimulation was reviewed by an epi-

lepsy physician (AL) to exclude recent seizures. A physician (AL) performed a pre-stimulation clinical

assessment (including assessment of the stimulation skin site and neurological examination) and was

present at the bedside during the entire procedure to monitor for clinical safety. Simultaneously, the

patients intracranial EEG recording was monitored in real-time at the bedside during stimulation for

seizures (AL, DF).

Consented subjects had one 2 � 2 cm rubber electrode placed on the mid-forehead (Fpz), and a

second similar electrode placed at the occiput (Oz) below the sterile dressing and distant from the

surgical skull defect, and applied with conductive paste (Figure 1). One subject (P014) had electrode

montages placed at differing locations (see Figure 2A). Subjects were then covered with a nickel-

cadmium sheath to reduce environmental artifact during recording. Additional sources of environ-

mental noise in the hospital setting were minimized when possible.

The stimulation protocol used the Neuroconn DC Stimulator Plus (NeuroConn, Germany), with a

sinusoidal waveform, at variable frequencies and intensities between 0.25 mA and 1 mA, zero-to-

peak amplitudes. Stimulation was performed during waking rest (eyes closed) and afternoon sleep.

Maximum stimulation intensities were primarily determined by the threshold at which amplifier satu-

ration occurred. Stimulation was immediately stopped in the event of an electrographic seizure. A

repeat clinical assessment (including assessment of stimulation skin site and neurological examina-

tion) was performed after stimulation.

Voltage and projected electric field measurements
Voltage recordings used the same electrodes as the intracranial EEG. Magnitude and sign of

induced voltages were measured by fitting a sinusoid to the recordings during sinusoidal stimulation.

This fitting is insensitive to any DC voltage bias of individual electrodes. Except for Figure 3B, all

other magnitude estimates are based on recordings during 1 Hz stimulation. These magnitudes

were then calibrated by dividing with the intensity of the stimulating current to correspond to 1 mA

current injection. The output of this post-processing were plotted and manually inspected electrode

by electrode. Those electrodes with strong 60 Hz interference and evident clipping (strong harmon-

ics in the harmonic fit) were discarded and were not used for model validation. In total we were able

to use 1205 electrodes among a total of 1380 electrodes: P03 (118/124), P04 (112/124), P05 (118/

124), P06 (117/124), P07 (78/80), P08 (116/120), P09 (184/250), P010 (101/124), P011 (111/118),

P014 (150/192). Mean and standard deviation per electrode were computed whenever more than

one recording session was available (all except Subject P04 and the last two stimulation montages

for P014).

The projected electric field, for both recordings and model predictions, was calculated in the

direction of adjacent electrode pairs by subtracting voltage values and dividing by their distance

resulting in a measure with unit of V/m. Since electric fields are non-uniform, only local estimates of

projected fields were measured by taking the difference only between the closest electrodes. Other

field directions and averages could be obtained by looking at more distant pairs, at the cost of mak-

ing systematic errors due to non-uniformity. Thus, for each electrode, a pair was selected as the
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closest electrode on the same grid/strip that is within a 10 mm radius for cortical electrodes, and 5

mm radius for depth electrodes. Note that with this operation we are only capturing the magnitude

in the specific orientation of the electrode pair used, that is, the cosine with the field vector.

Computational current-flow models
General procedure
MRIs were acquired on all the patients prior to the surgical implantation of electrodes. Within 24 hr

after the surgery, patients underwent a post-operative MRI to confirm the locations of the implanted

electrodes as part of their routine surgical evaluation. The model was built for each patient in the

voxel space of the post-op image. However, this image usually has artifacts caused by the magnetic

susceptibility of the implanted electrodes. Thus, we instead used the pre-op images to make the

models. To this end, the pre-op MRI of each subject was registered and resampled into the voxel

space of the post-op MRI.

The computational models were built following our previous work (Huang et al., 2013). Briefly,

the registered and resliced pre-op image was segmented by the New Segment toolbox

(Ashburner and Friston, 2005) in Statistical Parametric Mapping 8 (SPM8, Wellcome Trust Centre

for Neuroimaging, London, UK) implemented in Matlab (R2013a, MathWorks, Natick, MA). Segmen-

tation errors such as discontinuities in CSF and noisy voxels were corrected first by a customized

Matlab script (Huang et al., 2013) and then by hand in an interactive segmentation software ScanIP

(v4.2, Simpleware Ltd, Exeter, UK). The field of view (FOV) of the clinical MRI scans was extended

down to the neck by applying SPM8 registration functions ‘Coregister’ (Collignon et al., 1995) and

‘Normalise’ (Friston et al., 1995) to a standard head (Huang et al., 2013), and then resampling the

registered head and pasting it to the MRI of each individual patient. This process uses the soft-tissue

as landmark for registration. It extrapolates reasonably well to align skull and soft-tissue in 8 of the

10 patients. For P04 and P06 we had to leave the FOV restricted to the original MRI scan. The 2 � 2

cm stimulation electrodes were manually created and positioned interactively into the model using

ScanCAD module within ScanIP as follows. We took photographs of electrode placement in each

patient, and placed the electrode in the model based on the positions shown in these pictures. How-

ever, this process was limited by the bandages which occluded the stimulating electrodes, in particu-

lar on the back of the head. There the electrode was placed halfway over the occipital ridge unless

the photographs suggested otherwise. For each patient a finite element model (FEM, Logan, 2007)

was generated from the segmentation data by the ScanFE module in ScanIP and then the electric

potential distribution was solved by Abaqus (v6.11, SIMULIA, Providence, RI) under 1 A/m2 current

density injected into the frontal stimulation electrode (Griffiths, 1999). The resulting electric poten-

tial distribution was calibrated to correspond to 1 mA current injection.

The intracranial electrodes were localized and reconstructed from pre- and post-op MRIs using

previously developed procedures at NYUMC (Yang et al., 2012), and their coordinates were regis-

tered into post-op images to read off the electric potentials in the brain predicted by the model.

Specifically, the voltages on the FEM nodes at the brain that are closest to the electrodes were read

out, and are ready to be compared against the actual measurements (’Validation criteria’).

Model categories
To assess how different parameters in the modeling process affect the model predictions, we built

six categories of models for each subject. They are listed in order of increasing complexity in

Table 1.

Intact model (IM)
This is the model that is built on the immediate results from the segmentation process using the pre-

op MRI, that is, model with normal head anatomy (gray matter (GM), white matter (WM), CSF, skull,

scalp and air cavities). Anatomical alterations introduced by the surgery (e.g., craniotomy) are not

included in this model.

Realistic model (RM)
This is built upon the intact model, by further modeling all the structures introduced by the surgery.

Specifically, the craniotomy was modeled by inserting a cylinder of the same diameter as the burr
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hole into the skull and then intersecting the skull voxels. These voxels were given CSF conductivity

and this area was covered by soft-tissue (skin conductivity). Additional instruments used during the

surgery, such as the subgaleal electrodes and the Jackson-Pratt (JP) drain used to vacuum blood

products, were modeled by manually drawing out the corresponding voxels from the post-op MRI.

Since the intracranial electrode contacts are extremely small (the thickness is less than 1 mm in grid

arrays and linear strips), we did not model them explicitly. Instead, we did model the geometry of

the grid arrays and linear strips, by taking voxels from the CSF. To this end, customized Matlab

script was written to generate cylinders along adjacent intracranial electrodes on the strips and

arrays and then intersect with the CSF voxels. The insulated wires running through the scalp were

not modeled as their diameter (<1 mm) is not expected to significantly affect the predicted current

flow. Figure 4A–F shows a 3D rendering of such a realistic model for Subject P06. The realistic

model also includes an extension of the field of view as described above.

Realistic model truncated at the bottom of the skull (RMcut)
This is the same as the realistic model, except the lower head is cut off due to the limited FOV of

the clinical MRI scans. Note for Subjects P04 and P06, RMcut is the same as RM, since for these two

subjects we did not extend the FOV when building the models (see ’General procedure’).

Intact model without CSF (IM-CSF)
To test whether CSF is really important as claimed by many modeling studies (Vorwerk et al., 2014;

Wagner et al., 2014), we removed the CSF in the intact models by combining it with the brain (eye-

balls were combined with the scalp).

Realistic model with inhomogeneous skull (RM-3skull)
Starting from the realistic models, we further differentiated the skull spongiosa and compacta. Spe-

cifically, manually determined thresholding was performed for each subject to segment out the

spongy bone from the compact bone. See Figure 4G for an example. Note that we did not make

the skull anisotropic, as three-isotropic-layered model was recommended by a modeling study and

ex vivo measurement (Sadleir and Argibay, 2007). Thus, this skull model is inhomogenous and

isotropic.

Realistic model with anisotropic brain (RM+DTI)
Anisotropy (conductivity varying with direction) was added to the gray and white matter on three sub-

jects for whom diffusion tensor imaging (DTI) scans were available (P06, P07, P09). The DTI scans were

first corrected for non-linear susceptibility and eddy-current distortions with the FSL (Smith et al., 2004)

‘topup’ (Andersson et al., 2003) and ‘eddy’ (Andersson and Sotiropoulos, 2016) command-line tools

respectively. The mean of the non-diffusion-weighted (b0) volumes was then used to create the DTI brain

mask via the FSL ‘BET’ utility (Smith, 2002). Since the conductivity tensor is required to be positive semi-

definite, the diffusion tensor was calculated for the brain voxels with a non-linear optimization relying on

positive-definiteness constraints (Jones and Basser, 2004) as implemented in the Camino software

(Cook et al., 2006). After this, to integrate the DTI data into the model, the fractional anisotropy (FA) of

the diffusion tensor was computed and registered with an affine transformation to the voxel space of the

post-op MRI (where the model is built). To circumvent the complexity of spatially transforming the diffu-

sion tensors, the previous transform was applied to all the distortion-corrected diffusion-weighted vol-

umes. The positive semi-definite diffusion tensor was then computed again from the transformed

diffusion-weighted data, but within a different brain mask defined by the model. See Figure 4H for a

slice view of the diffusion tensor of Subject P06. Each mesh node in the model was then associated to

the nearest diffusion tensor. These diffusion tensors were then converted into conductivity tensors using

one of four different algorithms used in the literature: direct mapping (Tuch et al., 2001); volume nor-

malized (Hallez et al., 2008; Güllmar et al., 2010); volume constrained (Wolters et al., 2006;

Rullmann et al., 2009); and equivalent isotropic trace (Miranda et al., 2001). Models with these aniso-

tropic conductivities were also solved in Abaqus.

Note that when comparing across different categories of models listed above, literature conduc-

tivity values (see ’Conductivity optimization’) were used when solving the models. This is to avoid

any potential bias that may be introduced when using optimized conductivities (’Conductivity

optimization’).
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Validation criteria
For both the voltages and the projected electric fields, the model-predicted values and the recorded

values (see ’Voltage and projected electric field measurements’) were compared for each subject in

terms of two criteria: (1) Pearson correlation coefficient r between recorded and predicted values;

(2) the slope s of the best linear fit with predicted value as ‘independent’ and measurement as

‘dependent’ variables. The correlation captures how well the model predicts the distribution pat-

terns of the electric potential regardless of a potential mismatch in overall magnitude. The slope

measures how accurate the model estimates the absolute magnitudes. Since the ground reference

for the recordings (the subgaleal electrodes) is different from the ground for the model (electrode

placed on the back of the scalp surface), mean across electrodes was subtracted from the recordings

and the model outputs before they were compared. Slope and correlation are both independent of

an overall offset.

Pairwise t-test was carried out to compare how different conductivity values and different model

types affect the prediction accuracies (Figure 8 and Figure 9). Note that when comparing magni-

tude accuracy as indicated by the slope s, the t-test was performed on the absolute distance of s to

slope of 1.

Conductivity optimization
We first assigned literature conductivities to the realistic models. The following values were used (in

S/m): GM–0.276; WM–0.126; CSF–1.65; skull–0.01; scalp–0.465; air–2.5 � 10�14; gel–0.3; electrode–

5.9 � 107 (Crille et al., 1922; Burger and Milaan, 1943; Freygang and Landau, 1955;

Ranck, 1963; Hasted, 1973; Geddes, 1987; De Mercato and Garcia Sanchez, 1992; Gabriel, 1996;

Akhtari et al., 2002). For realistic models with inhomogeneous skull: spongiosa: 0.02865 S/m; com-

pacta: 0.0064 S/m (Akhtari et al., 2002). The JP Drain and intracranial electrode grids and/or strips

were made almost insulated (<10�14 S/m).

We note that in the literature cited above a range of values are reported, all of which have been mea-

sured at 10 Hz or higher frequencies (up to 1 GHz, in S/m): skull: 0.0028 ~ 0.08 (Oostendorp et al.,

2000; Akhtari et al., 2002; Hoekema et al., 2003); scalp: 0.0003 ~ 1.0 (Gabriel et al., 1996); WM: 0.1 ~

1.0 (Gabriel et al., 1996); GM: 0.016 ~ 1.0 (Freygang and Landau, 1955; Gabriel et al., 1996;

Peters et al., 2001; Logothetis et al., 2007).

Secondly, the optimal conductivity for each patient was obtained by fitting the model outputs to

the recordings. Formally, the following optimization problem was solved:

s
� ¼

s

argmin f ðsÞ; where f ðsÞ ¼
1

M

X

M

i¼1

Ei� ÊiðsÞ
� �2

: (1)

Here Ei is the projected electric field on electrode i calculated from recorded voltage, and ÊiðsÞ is the

corresponding model-predicted value, which depends on the conductivity s. M is the total number of

intracranial electrodes. Mean across electrodes was subtracted from both recordings and model predic-

tions before evaluating the cost function. A general purpose optimization algorithm – Pattern Search

(Audet and Dennis, 2002), available in Matlab – was used to solve this optimization. This procedure was

carried out only on the realistic model for each subject individually. In fitting conductivity parameters we

found that the values are generally under-constrained (very different conductivity values can give similar

goodness of fit). We therefore limited the fitting to adjusting scalp, skull, and brain conductivities, but

fixed CSF (1.65 S/m) and maintained the ratio between gray and white matter constant (=2.19) reflecting

the values reported in the literature. Thus there are only three free parameters in the optimization, which

is also beneficial in order to keep computing times reasonable. Each model evaluation took approxi-

mately 30 min, and optimization was terminated after 300 evaluations of the Pattern Search algorithm.

Note that the conductivities of the tissues are optimized jointly, that is, they are adjusted simultaneously

per evaluation of the cost function.

To estimate the uncertainty in this parameter estimation we computed the variance of the estima-

tor based on the Cramér-Rao bound (Radhakrishna Rao, 1945; Cramér, 1999). This was done sepa-

rately for each conductivity value, which gives a loose lower bound for the estimation error, that is,

varðsÞ>
f ðs�Þ

Ma
; (2)
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where varðsÞ is the estimation variance of the conductivity, and f ðs�Þ is the residual error (Equa-

tion 1). Here a is the parameter of a quadratic fit to the cost function around the optimal value. The

expression to the right is the inverse of the Fisher information, estimated numerically. For parame-

ters that were fixed to the literature values (gray matter and CSF), we similarly solved the model for

close-by values (±10%) and report the sensitivity of the normalized error to this 10% fluctuation. All

values are shown in Figure 8—figure supplement 1.

Finally, we also tested the median of the optimal conductivity across all subjects (P03–P011, and

P014).
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Güllmar D, Haueisen J, Reichenbach JR. 2010. Influence of anisotropic electrical conductivity in white matter
tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
NeuroImage 51:145–163. doi: 10.1016/j.neuroimage.2010.02.014

Hallez H, Vanrumste B, Hese PV, Delputte S, Lemahieu I. 2008. Dipole estimation errors due to differences in
modeling anisotropic conductivities in realistic head models for EEG source analysis. Physics in Medicine and
Biology 53:1877–1894. doi: 10.1088/0031-9155/53/7/005

Hasted JB. 1973. Aqueous Dielectrics. Studies in Chemical Physics. London: Chapman and Hall.
Hayes KJ. 1950. The current path in electric convulsion shock. Archives of Neurology and Psychiatry 63:102–109.
doi: 10.1001/archneurpsyc.1950.02310190108008
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