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Background and purpose: Acute Respiratory Distress Syndrome (ADRS) due to coronavirus disease 2019
(COVID-19) has been associated with muscle fatigue, corticospinal pathways dysfunction, and mortality.
High-Definition transcranial Direct Current Stimulation (HD-tDCS) may be used to attenuate clinical
impairment in these patients. The HD-RECOVERY randomized clinical trial was conducted to evaluate the
efficacy and safety of HD-tDCS with respiratory rehabilitation in patients with moderate to severe ARDS
due to COVID-19.
Methods: Fifty-six critically ill patients were randomized 1:1 to active (n ¼ 28) or sham (n ¼ 28) HD-tDCS
(twice a day, 30-min, 3-mA) plus respiratory rehabilitation for up to 10 days or until intensive care unit
discharge. The primary outcome was ventilator-free days during the first 28 days, defined as the number
of days free from mechanical ventilation. Furthermore, secondary outcomes such as delirium, organ
failure, hospital length of stay and adverse effects were investigated.
Results: Active HD-tDCS induced more ventilator-free days compared to sham HD-tDCS. Patients in the
active group vs in the sham group experienced lower organ dysfunction, delirium, and length of stay
rates over time. In addition, positive clinical response was higher in the active vs sham group. There was
no significant difference in the prespecified secondary outcomes at 5 days. Adverse events were similar
between groups.
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Conclusions: Among patients with COVID-19 and moderate to severe ARDS, use of active HD-tDCS
compared with sham HD-tDCS plus respiratory rehabilitation resulted in a statistically significant in-
crease in the number of ventilator-free days over 28 days. HD-tDCS combined with concurrent reha-
bilitation therapy is a safe, feasible, potentially add-on intervention, and further trials should examine
HD-tDCS efficacy in a larger sample of patients with COVID-19 and severe hypoxemia.
© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Patients critically ill with coronavirus disease 2019 (COVID-19)
often require mechanical ventilation and prolonged hospitalization
duration to restore adequate gas exchange and to alleviate acute
respiratory distress syndrome (ADRS) [1]. There is variability be-
tween individual studies with respect to frequency of ARDS caused
by COVID-19 [2e4]; individual studies for which data is available
indicate that among hospitalized COVID-19 patients, approximately
1/3 (33%) develop ARDS, 1/4 (26%) require transfer to an intensive
care unit (ICU), and 1/6 (16%) receive invasive mechanical ventila-
tion [5]. Injury to the brain - whether secondary to systemic (res-
piratory system) dysfunction, neuro-vascular damage, or direct
neural-invasion (e.g., via the olfactory nerve) [6] contributes to
COVID-19 pathophysiology, symptoms, and progression [7]. Non-
invasive brain stimulation approaches have been investigated for
the management of disorders related to COVID-19 [8,9]. Regarding
its anti-inflammatory actions, non-invasive vagus nerve stimula-
tion has been trialed for the treatment of respiratory symptoms and
inflammatory markers among patients who were hospitalized for
COVID-19 [10].

High-Definition transcranial Direct Current Stimulation (HD-
tDCS) is a special form on non-invasive brain stimulation that al-
lows: 1) focal stimulation of cortical targets 2) using direct current
to boost excitability and neuroplasticity [11]; 3) with minimal side-
effects; and 4) in a portable way [12]. In severe COVID cases, muscle
fatigue and weakness can hamper respiratory function leading to a
vicious cycle requiring mechanical ventilation, which per se, can
cause more weakness [13]. tDCS applied over the diaphragmatic
motor cortex may engage not only intracortical circuits, but also
spinal motor circuits, modulating the respiratory motor evoked
potentials [14]. Because COVID-19 is believed to induce or exacer-
bate microvascular injury [15], the potential neurovascular
response induced by tDCS may provide further benefit [16].

Given the potential adjuvant effect of neurostimulation, tDCS
can enhance gains to the rehabilitation results on the motor and
cognitive function under different clinical conditions [17,18]. For
example, the motor cortex is responsible for coherent cortico-
muscular oscillations [19] and tDCS actions cortical networks
enhance intermuscular coherence [20]. Specifically, regarding the
respiratory function, tDCS paired with exercise training enhances
breathing in patients with chronic stroke patients, as indicated by
an increase in forced expiratory volume and forced vital capacity
[21]. In healthy subjects, anodal tDCS increased chest wall inter-
muscular coherence during breathing [22]. Separately, tDCS actions
on cerebral blood flow [23,24] have been directly linked to cortical-
motor drive [25,26]. These findings indicate that tDCS can facilitate
cortical activity and restore functional coupling between central
and peripheral motor systems, directly or as adjuvant therapy,
supporting functional recovery.

The HD-RECOVERY randomized clinical trial was conducted to
evaluate the efficacy and safety of active or sham HD-tDCS in as-
sociation with respiratory rehabilitation in patients with moderate
to severe ARDS due to COVID-19. The hypothesis was that HD-tDCS
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combined with concurrent rehabilitation therapy would increase
the number of ventilator-free days during the first 28 days, thereby
reducing rates of delirium, organ dysfunction, and hospital length
of stay.

2. Methods

2.1. Overview

This trial was an investigator-initiated, parallel-group, stratified,
double-blinded randomized clinical trial. The protocol was
approved by the independent ethics committee (Paraíba Govern-
ment) and conducted in compliance with the Declaration of Hel-
sinki [27]; it is registered in clinicaltrials.gov (NCT04844554). All
patients or legally authorized representatives provided written
informed consent.

2.2. Participants

Patients underwent screening and randomization between April
14 to September 2, 2021. Final follow-up was completed on October
4, 2021. Patients of at least 18 years-old with a PCR-confirmed
SARS-CoV-2 diagnosis and receiving mechanical ventilation at
least 48 h of meeting criteria for moderate to severe acute respi-
ratory distress syndrome (ARDS), under weaning, were enrolled in
this study. An ARDS diagnosis was made according to the Berlin
Definition criteria [28]. Patients were excluded if they had a con-
dition that could prevent adequate performance of inspiratory
muscle training (e.g., neuropathy, myopathy, agitation), pregnancy
or active lactation, Glasgow Coma Scale (GCS) [29] � 8, consent
refusal, and contraindications to brain stimulation (e.g., aneurysm
clips) [30].

2.3. Randomization

Randomization was performed through an online web-based
system using computer-generated random numbers stratified by
age. Participants admitted consecutively were assigned randomly
in a 1:1 ratio to receive active or sham HD-tDCS for 10 days or until
ICU discharge, whichever occurred first, plus respiratory rehabili-
tation. Treatment assignments were concealed from patients, cli-
nicians, investigators, trial statisticians and the data and safety
monitoring committee.

2.4. Data collection and monitoring

Patients were followed up for 28 days after randomization (both
hospitalized patients and those who had been discharged). Previ-
ous studies showed that severe COVID-19 can occur in otherwise
healthy individuals, but certain underlying medical comorbidities
have also been associated with severe illness andmorbidity [31,32].
Since clinical characteristics at baseline are factors that may help to
better define the risks of mechanical ventilation [33], we included
the comorbidities most prevalent among these COVID-19 patients.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://clinicaltrials.gov
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Data on demographic characteristics, hemodynamic variables,
respiratory status, adverse events, and concomitant medications
were collected. In addition, we obtained the following information
at baseline (day 1): degree of comorbidity, as assessed by the
Charlson Comorbidity Index (CCI) [34], and severity of acute injury
throughout Simplified Acute Physiology Score III (SAPS-III) [35,36].

Trial investigators reported any serious adverse events daily
through day 28. Individual patient data on infections and/or serious
adverse events were adjudicated by a blinded investigator. Trial
data were monitored (including consent and source data verifica-
tion) by independent monitors according to a prespecified moni-
toring plan.
2.5. Interventions

2.5.1. HD-tDCS
HD-tDCS was delivered on 10 consecutive weekdays, with two

sessions per day (in the morning and in the afternoon). For each
participant, a 3-mA current was applied via a center anode using a
Soterix Medical Inc. stimulator (mini-CT with 4� 1 adaptor, Soterix
Medical, New York, NY, USA). The center anode was placed at the
left diaphragmatic primary motor cortex (4 cm lateral to the
midline and 1 cm anterior to the binaural line) [37] and the four
cathodes were spaced in a radius ~7.5 cm from the center electrode.
The Soterix Medical adaptor passively splits current produced by
the mini-CT among these cathodes. For those in the active group,
the electrical current was delivered with a ramp-up time of 30 s,
held at 3 mA for 30 min, and then ramped down over 30 s. In the
sham condition, the device provided a 30-s ramp-up period to the
full 3 mA, followed immediately by a 30-s ramp down. Each set of
five electrodes were used for 10 sessions and the location of each
electrode was rotated to where any given electrode was used as the
center anode twice and ring cathode 8 times [38]. The electrodes
were placed in an adapted headgear that supported the required
HD-tDCS positions (Fig. 1). Brain stimulation was applied concur-
rently with pulmonary rehabilitation to both groups. Investigator
blinding was performed by a predefined code triggered active or
sham tDCS (i.e., a participant-specific code that was entered into
the unit at the start of the session), thereby ensuring study team
members were blind to stimulation condition. Blinding efficacy was
assessed at the end point by asking staff to guess the patient's
allocation group.
2.6. Respiratory rehabilitation

The inspiratory muscle training program was based upon a
previous protocol applied to facilitate weaning of ventilatory sup-
port [39]. Training was based on progressive regimen: In the first
session, the target was to start with a load of 30% of the partici-
pant's maximal inspiratory pressure, increasing daily by 10% (ab-
solute), with training for 5 min, twice a day, seven days a week
throughout the weaning period. Supplemental oxygen was pro-
vided as needed. During 25 remaining minutes, the session also
included regular physiotherapy intervention including daily pas-
sive movement of all joints and positional therapy [40e42].

The session was interrupted if a patient had any of the
following: respiratory frequency of more than 30 breaths per
minute, arterial saturation below 90%, systolic blood pressure
above 180 mm Hg or below 90 mm Hg, paradoxical breathing, or
tachycardia above 140 beats per minute [43e45]. When any of
these signs occurred during a training session, the load was
maintained (i.e., not increased by 10%) at the next session.
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2.7. Outcomes

The primary outcome was ventilator-free days during the first
28 days, defined as the number of days free from mechanical
ventilation for at least 48 consecutive hours [46]. Patients dis-
charged from the hospital before 28 days were considered free from
mechanical ventilation at 28 days and nonsurvivors at day 28 were
considered to have no ventilator-free days [47].

Secondary outcomes were assessed at baseline, and on days 5,
11, and 28, and included changes in the (1) Confusion Assessment
Method for the ICU (CAM-ICU) [48] and the Sequential Organ
Failure Assessment (SOFA) scale scores [49]; (2) hospital length of
stay (LOS), defined as the total number of days that patients
remained hospitalized from the date of randomization until the
date of hospital discharge; (3) rates of adverse events; (4) clinical
response (defined as a reduction from baseline SOFA score from all
weeks greater than 3 points). Changes in SOFA score have been
used to assess the effects of therapeutic interventions [50e53]. The
delta SOFA (DSOFA) and delta CAM-ICU (DCAM-ICU) were calcu-
lated as the difference between the score on a specific day and the
score on the day of admission to the ICU.

2.8. Statistical analysis

No reliable data were available at the time of trial design to
allow for an accurate sample size calculation. We originally esti-
mated that 24 patients per group or 48 patients in total were
required for the trial to have 80% power to detect a difference of 3.2
(1.2 SD; margin of clinically meaningful difference 1.9) ventilator-
free days between groups, assuming that 15% of patients would
die at 28 days. The mean difference of ventilator-free days was
calculated based on local hospital-level pilot clinical estimates, and
no prior data were available on the distribution of clinical status
categories over time in patients with severe COVID-19.

For the primary outcome (ventilator-free days during the first 28
days) and secondary outcomes (delta SOFA, delta CAM-ICU and
LOS), we performed a generalized linear model, adjusted for age
and partial pressure of arterial blood oxygen to fraction of inspired
oxygen (Pao2:Fio2) ratio at randomization. The effect size was
estimated as the mean difference (95% confidence interval) for the
primary outcome and LOS, and as the number needed to treat
(NNT) for the secondary outcomes.

Clinical responses of the interventions at 28 days after
randomizationwere compared using Kaplan-Meier survival curves.
The Cox model was used to estimate the hazard ratio and its con-
fidence interval associated with the intervention [54].

We performed exploratory analysis to identify whether the
variables age, Pao2:Fio2 ratio, CCI score, Simplified Acute Physi-
ology Score III (SAPS III) are moderators of the primary outcome.
Additionally, we performed linear model analyses to estimate the
interactions for these baseline outcomes (age, CCI, Pao2:Fio2 and
SAPS score) and the length of stay.

Adverse events are expressed as counts and percentages and
compared between groups using the c2 test. All patients who were
randomized and received at least 1 HD-tDCS session were assessed
for efficacy and adverse events. There was no loss to follow-up, and
data on the clinical outcomes and mortality within 28 days were
available for all patients. Missing values on individual outcome
components were imputed as normal. One patient was declared by
a physician on day 8 as being well enough to hospital discharge. To
test the integrity of blinding, investigator's responses when asked
to guess the treatment group of patients were compared for active
and sham groups using a c2 test. A 2-sided P value of less than 0.05
was considered statistically significant. All analyses were per-
formed using the R software version 4.0.2 (R Core Team) and the



Fig. 1. HD-tDCS setup and montage. A. 4x1 HD-tDCS device. B. Soterix neurostimulator delivering the current on the 5 electrodes in a 4x1 HD-tDCS montage positioned around a
circle of 7.5 cm of diameter centered to the target electrode position (the left diaphragmatic motor cortex).
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GraphPad Prism software version 8.0 for Mac (GraphPad Software,
San Diego, CA, USA).
3. Results

3.1. Participants

Of 168 patients who consented and were assessed for eligibility,
112 were excluded (97 did not meet eligibility criteria and 15
withdrew consent). Of the enrolled patients, 28 were randomly
assigned to receive active HD-tDCS and 28 to the sham group
(Fig. 2).
3.2. Trial and concomitant interventions

Both groups received pulmonary rehabilitation daily during HD-
tDCS. Baseline characteristics were well balanced between groups,
including severity of ARDS. The use of respiratory, circulatory, and
kidney support and the use of other anti-inflammatory, antiviral,
and antibacterial drugs were similar between groups at baseline
(Table 1).
3.3. Primary outcome

Multiple linear model analysis revealed that the mean number
of days free from mechanical ventilation during the first 28 days
was significantly higher in the active group than in sham group
(binterv¼ 7.47; 95% CI, 3.95e10.99; P < .001; mean difference¼ 7.42;
3.90 to 10.95) (Table 2). The cumulative frequency of ventilator-free
days according to the study group is shown in Fig. 3.
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3.4. Secondary outcomes

3.4.1. Organ dysfunction and clinical response
Organ dysfunction was similar between groups at baseline and

on day 5 (P > .05). However, patients in the active group experi-
enced significantly greater improvement over time compared with
those in the sham group at 11 days (bint ¼ 5.43; 95% CI, 3.37 to 7.57;
P < .001) and 28 days (bint ¼ 7.21; 95% CI, 4.86 to 9.57; P < .001)
(Table 2) (Fig. 4).

Respectively for the active and sham groups, 24 and 11 patients
presented positive clinical responses (i.e., a change from baseline in
SOFA score of�3 points) at 28 days. KaplaneMeier analysis showed
a cumulative survival (positive clinical response) of 83.33% (stan-
dard error ¼ 8.7%) and 52.80% (standard error ¼ 9.7%), respectively
for the active and sham groups. The Cox proportional hazards ratio
associated with active group was 2.00 (95% CI, 0.96e4.146;
P ¼ .0009). The corresponding NTT was 2 and the relative risk
reduction associatedwith active groupwas 0.91 (95% CI, 0.37e0.98;
P < .05) (Fig. 5).
3.5. Length of stay and delirium

The median length of stay was shorter in the active group
compared with the sham group (bint ¼ 7.03; 95% CI, 4.44 to 9.61;
P < .001; mean difference, 7.75; 4.89 to 10.60) (Table 2). As sug-
gested by the earlier discharge date, the mean Delta CAM-ICU score
at 11 days after randomization was significantly lower in the active
group (bint ¼ �2.79; 95% CI, �3.79 to �1.79; P < .001) when
delirium cleared in 13 patients from the active group but only 5 in
the sham group (NNT ¼ 3.3, Relative risk reduction 0.36; 95% CI,
0.04e0.58) (Table 2; Fig. 4B). At 28 days, there was no significant
difference between the groups in the Delta CAM-ICU score



Fig. 2. Screening, Randomization, and Follow-up of Patients in the HD-RECOVERY trial. HD-tDCS indicates High-definition transcranial direct current stimulation.
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(bint ¼ 0.23; 95% CI, �0.98 to 1.45; P ¼ .69) when only 1 patient in
each group remained in delirium.
3.6. Safety outcomes

All 7 [12.5%] but one death through day 28 (3 in the active group
and 4 in the sham group) occurred in patients aged 69 years or
older, but none was attributed to HD-tDCS treatment. A total of 5
and 3 mild adverse events (i.e., transient skin redness) were
recorded in the active and sham groups, respectively (P¼ .44). More
patients in the sham group experienced secondary infections (11
Table 1
Baseline characteristics.a.

Characteristic Active HD-tDCS Sham HD-tDCS

Age, mean (SD), y 67.25 68.92
Women, n (%) 9 (32.14) 10 (35.71)
SAPS III, median (IRQ)b 58 (51.5e68.25) 61 (50e65)
CCI, median (IRQ)c 3 (1.75e4.25) 4 (3e5)
PaO2/FiO2 ratio, mean (SD) 167.6 (41.74) 168.7 (34.40)
Comorbidities and risk factors, n (%)
Hypertension 14 (50) 16 (57.14)
Chronic ischemic heart disease 8 (28.57) 7 (25)
COPD 3 (10.71) 5 (17.85)
Chronic kidney disease 2 (7.14) 3 (10.71)
Diabetes 8 (28.57) 5 (17.85)
Chronic liver disease 3 (10.71) 2 (7.14)

Concomitant Medications, n (%)
Convalescent plasma or serum 7 (25) 7 (25)
Steroids 15 (53.57) 16 (57.14)
Antibiotics 21 (75) 23 (82.14)
Adrenergic agents 16 (57.14) 14 (50)

Abbreviations: SAPS III, Simplified Acute Physiology Score III; CCI, Charlson Co-
morbidity Index; PaO2/FiO2, Partial Pressure of Arterial Oxygen; COPD, Chronic
obstructive pulmonary disease.

a Continuous variables are presented as mean (SD) unless otherwise indicated.
b The Simplified Acute Physiology Score III ranges from 0 to 217. High scores

indicate a higher risk of death, and it is calculated from 20 variables at admission of
the patient.

c Express as sum of the weights, with higher scores indicating not only a greater
mortality risk but also more severe comorbid conditions.
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patients) compared with patients in the active group (8 patients)
during the study period (P ¼ .05). Apart from deaths, 2 serious
adverse events were reported, all in the sham group: 1 episode of
stroke possibly related to SARS-CoV-2 (on day 17), 1 episode of
cardiac dysfunction related to a pulmonary embolism (on day 23).
No serious adverse events were attributed to the study treatment.
No serious adverse events occurred in the active group.

3.7. Exploratory analyses

In subgroup analyses, tests for effect were not statistically sig-
nificant for subgroups defined by age (P ¼ .35), CCI (P ¼ .40),
Pao2:Fio2 ratio (P ¼ .79) and SAPS III (P ¼ .60). No significant effect
was found between baseline clinical status (age, CCI, PaO2:FiO2 and
SAPS score) and length of stay (P >. 42).

3.8. Integrity of blinding

Investigators were unable to guess the participant's actual group
beyond chance. The stimulation groups did not differ in this regard
(c2(2) ¼ 0.157; P ¼ .71).

4. Discussion

In this randomized clinical trial involving 58 adults with mod-
erate to severe ARDS due to COVID-19, active HD-tDCS plus respi-
ratory rehabilitation significantly increased the number of days free
of mechanical ventilation during the first 28 days. This outcome
suggests a clinically meaningful benefit of HD-tDCS in patients with
severe COVID-19. Furthermore, HD-tDCS combined with concur-
rent rehabilitation therapy was associated with improvement in
other parameters (clinical status, delirium, length of hospital stay)
without increasing adverse events in this population of critically ill
COVID-19 patients.

The observed clinical benefit from HD-tDCS in the present study
may be explained by several underlying mechanisms. A first plau-
sible explanation relates to the interplay between the altered res-
piratory drive during mechanical ventilation and the corticospinal



Table 2
Clinical outcomes.

Primary Outcomea Active (n ¼ 28) Sham (n ¼ 28) P valueb

Ventilator-free days .01
Mean (95% CI) 16.57 (14.20e18.94) 9.14 (6.72e11.55)
Median (IQR) 18 (16.75e19.25) 9.5 (3e12)
Secondary Outcomes
Organic Dysfunction, Mean (95% CI) c

Baseline 11.64 (10.78e12.50) 10.85 (9.89e11.82) .24
Day 5 10.81 (9.63e11.99) 11 (9.88e12.11) .82
Day 11 4.62 (3.45e5.80) 9.28 (7.90e10.66) .01
Day 28 1.04 (0.64e1.43) 7.5 (6.54e8.45) .01
Delirium, Mean (95% CI) d

Baseline 4.75 (4.03e5.46) 4.35 (3.60e5.11) .46
Day 5 4.29 (3.65e4.94) 4.32 (3.50e5.13) .96
Day 11 0.88 (0.52e1.25) 3.35 (2.62e4.08) .01
Day 28 0.04 (0.03e0.11) 0.15 (0.13e0.43) .50
Length of Stay Mean (95% CI) 15.11 (13.27e16.93) 22.86 (20.81e24.89) .01
Median (IQR) 15 (12e17) 22 (19e26)

a Express as the number of days alive and free from mechanical ventilation for at least 48 consecutive hours.
b P value for the treatment group comparison were estimated using general linear models.
c Measured in 6 organ systems (cardiovascular, hematologic, gastrointestinal, renal, pulmonary, and neurologic), with each organ score from 0 to 4, resulting in an

aggregated score that ranges from 0 to 24, with higher scores indicating grater dysfunction. An initial SOFA score up to 9 predicts a mortality risk of less than 33%.
d Final CAM-ICU-7 score ranges from 0 to 7 with 7 beingmost severe. CAM-ICU-7 scores were further categorized as 0e2: no delirium, 3e5: mild tomoderate delirium,

and 6e7: severe delirium.
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control of respiratory muscles [55]. Previous studies have shown
supra-threshold brain stimulation activates cortical projections
directly stimulating the diaphragm [56e58]. Mechanical ventila-
tion reduces the excitability of the motor cortex supplying the
diaphragm [59]. Thus, considering that modulation of motor cortex
excitability is the canonical neurophysiological outcome of tDCS
[60,61], our intervention may restore excitability of the diaphrag-
matic primary motor cortex. Second, is the boosting of motor
learning and motor rehabilitation efficacy when paired with tDCS
[62]. Third, enhancement of cerebral blood flow by tDCSmay have a
neuroprotective function and/or counteract COVID-19 microvas-
cular injury [63e65].

The definition of clinical response used in this study (3 points
grades on the SOFA scale) essentially translates to a change in
clinical condition requiring invasive mechanical respiratory sup-
port, sepsis or death [66]. The difference between groups was
associated with a large effect size and this reduction is clinically
relevant, in which a tolerable, safe, and widely available interven-
tion like HD-tDCS increase the number of ventilator-free days and
may reduce the risk of pulmonary complications, hospital length of
stay, organ dysfunction and burden to the health care system.
Fig. 3. Ventilator-Free Days at 28 Days. Panels showing individual changes in
ventilator-free days from baseline to treatment slopes (follow-up) are displayed with
box plots for groups (mean, central line; SD, boxes) overlaid with dots for single
patients.
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Active HD-tDCS was superior to sham HD-tDCS to delirium at 11
days, but not on day 28. These time points reflect different clinical
concepts and the presence of ‘a ceiling’ effect may explain these
findings. Often physicians and nurses are reluctant to discharge
patients with delirium from the ICU [67]. In our study, after 28 days
Fig. 4. Organ Dysfunction and Delirium Rates. Distributions of the Secondary Out-
comes Organ Dysfunction, SOFA score, (A) and Delirium, CAM-ICU score, (B) from
baseline to endpoint. Active High-definition transcranial direct current stimulation
(HD-tDCS) was superior to sham. Intention-to-treat analysis. Error bars indicate 1 SD.



Fig. 5. Clinical Response. Distributions of the Secondary Outcomes Organ Dysfunction,
SOFA score, (A) and Delirium, CAM-ICU score, (B) from baseline to endpoint. Active
High-definition transcranial direct current stimulation (HD-tDCS) was superior to
sham. Intention-to-treat analysis. Error bars indicate 1 SD.
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of enrollment, most of the active group patients have been dis-
charged from ICU and lower rates of delirium were found in the
remaining patients from both groups. Future trials should consider
monitoring delirium patients whose critical illness has resolved.

HD-tDCS plus respiratory rehabilitation was tolerable and safe,
with both groups presenting similar adverse events. Mild and
transient scalp erythema was the only adverse event associated
with Active HD-tDCS, which is consistent with the general popu-
lation non-significant-risk profile of tDCS [68]. HD-tDCS was
selected based on its established tolerability, portability, and focal
cortical modulation [69] e and shown here to be deployable to
intensive care units.

The strengths of this trial include the pragmatic protocol,
representative of a real word setting, allocation concealment and
blinding and the high percentage of follow-up at 28 days. Also,
adverse events data regarding HD-tDCS use among patients with
COVID-19 were prespecified secondary safety outcomes and accu-
rately provided, along with detailed data on ARDS treatment, and
clinical variables.

This study has several limitations. First, because of the urgent
circumstances in which the study was conducted, the in-hospital
study setting may limit the generalizability of these results to pa-
tients with COVID-19 in other settings. Second, other laboratory/
clinical parameters that are not routinely collected could elucidate
the effect of intervention on various pathophysiological (e.g., in-
flammatory, oxidative stress, Body mass index evaluation and
vaccination status) pathways. Third, since these patients did not
receive any specific COVID-19 medication, for example, the
monoclonal antibodies, but only medical support, changes in the
treatment of COVID-19 during the study (such as adjusting medi-
cation dose) may have influenced the results. Fourth, this clinical
trial cannot distinguish between alternative therapeutic mecha-
nisms that have been identified in pre-clinical models and non-
COVID trials, including enhancement of diaphragmatic neuro-
muscular drive [56] or neuro-vascular modulation [64,65,70,71].
Fifth, the conditions of the trial did not allow leveraging techniques
such as image guided targeting [72] or additional study arms (e.g.,
tDCS alone). Sixth, this study was conducted prior to both wide-
spread vaccination and circulation of the Delta (B.1.617.2) and
Omicron (B.1.1.529) variants.
5. Conclusions

Among critically ill patients with COVID-19 and moderate to
severe ARDS, active HD-tDCS significantly increased the number of
ventilator-free days over 28 days. The results of this trial support
786
the early use of HD-tDCS associated with respiratory support of
severe COVID-19 patients and encourage further trials to examine
the efficacy of brain stimulation in a large sample with pulmonary
disease.
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