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Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for

Parkinson’s disease (PD) is still a challenge. Thus, there is a need to synthesize available

results, analyze methodologically and statistically, and provide evidence to guide tDCS

in PD.

Objective: Investigate isolated tDCS effect in different brain areas and number of

stimulated targets on PD motor symptoms.

Methods: A systematic review was carried out up to February 2021, in databases:

Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text

articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor

symptoms of PD were included.

Results: Ten studies (n= 236) were included inmeta-analysis and 25 studies (n= 405) in

qualitative synthesis. The most frequently stimulated targets were dorsolateral prefrontal

cortex and primary motor cortex. No significant effect was found among single targets on

motor outcomes: Unified Parkinson’s Disease Rating Scale (UPDRS) III – motor aspects

(MD = −0.98%, 95% CI = −10.03 to 8.07, p = 0.83, I² = 0%), UPDRS IV – dyskinesias

(MD=−0.89%, CI 95%=−3.82 to 2.03, p= 0.55, I²= 0%) and motor fluctuations (MD

= −0.67%, CI 95% = −2.45 to 1.11, p = 0.46, I² = 0%), timed up and go – gait (MD =

0.14%, CI 95% = −0.72 to 0.99, p = 0.75, I² = 0%), Berg Balance Scale – balance (MD

= 0.73%, CI 95%=−1.01 to 2.47, p= 0.41, I²= 0%). There was no significant effect of

single vs. multiple targets in: UPDRS III – motor aspects (MD = 2.05%, CI 95% = −1.96

to 6.06, p = 0.32, I² = 0%) and gait (SMD = −0.05%, 95% CI = −0.28 to 0.17, p =

0.64, I² = 0%). Simple univariate meta-regression analysis between treatment dosage
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and effect size revealed that number of sessions (estimate = −1.7, SE = 1.51, z-score

= −1.18, p = 0.2, IC = −4.75 to 1.17) and cumulative time (estimate = −0.07, SE =

0.07, z-score = −0.99, p = 0.31, IC = −0.21 to 0.07) had no significant association.

Conclusion: There was no significant tDCS alone short-term effect on motor function,

balance, gait, dyskinesias or motor fluctuations in Parkinson’s disease, regardless of brain

area or targets stimulated.

Keywords: transcranial direct current stimulation (tDCS), Parkinson’s disease, neuromodulation,motor symptoms,

meta-analysis

INTRODUCTION

Parkinson’s disease (PD) is a chronic, multisystemic,
neurodegenerative disorder with various mechanisms underlying
its neuropathology (1). PD is standing out as a leading cause of
disability-adjusted life year (DALY) globally (increasing 148%
between 1990 and 2016), the most growing neurological disorder
according to the Global Burden of Disease 2016 (2), and affecting
6.1 million people (3). As an aggravating factor, the forecast
predicts that this number will double in the next generation (3).

Parkinson’s disease is characterized by a triad of cardinal
symptoms (bradykinesia, tremor, and rigidity). Bradykinesia or
slowness of movement is the most characteristic motor symptom
(4), covering many motor manifestations (5). Tremor initially
appears unilateral and progresses to bilateral, worsening in
stressful circumstances or cognitive tasks, and can be attenuated
during sleep or movement (6). Rigidity causes constant or
oscillating resistance to passive joint movement and can be
increased by tasks demanding attention (7).

Among the current treatments available, drug administration
is the most common option. However, a significant
decrease in response to a drug occurs ∼5 years after initial
treatment, worsening motor fluctuations, dyskinesia, dystonia,
incoordination, and arthralgia (9). Neurosurgical procedures
involving deep brain stimulation are another option, but this
method presents high cost (9), surgical risk (8), and possibility
of worsening of verbal fluency and axial motor symptoms
(8, 9). Appropriate interventions present little or no adverse
effects, improve functionality and well-being, and delay the
progression of the disease (9). Thus, new therapeutic approaches
are necessary to provide a better quality of life and to reduce the
financial burden for society and health systems.

Transcranial direct current stimulation (tDCS) has
gained prominence for being a non-invasive, safe, low-cost
neuromodulatory modality, with minimal or no adverse
effect (10, 11). Its mechanisms of action go far beyond the

Abbreviations: PD, Parkinson’s disease; tDCS, transcranial direct current
stimulation; a-tDCS, anodic transcranial direct current stimulation; c-tDCS,
cathodic transcranial direct current stimulation; DALY, Disability-adjusted life
year; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-
Analyses; PEDro, Physiotherapy Evidence Database; UPDRS, Unified Parkinson’s
Disease Rating Scale; HY, Hoehn and Yahr; FOG, Freezing of gait; MD, Mean
difference; SMD, Standardized mean difference; CI, Confidence interval; DLPFC,
Dorsolateral prefrontal cortex; M1, Primary motor cortex; TUG, Timed up and go;
BBS, Berg Balance Scale.

elementary reasoning that anodic (a-tDCS) and cathodic
(c-tDCS) stimulation increases or decreases, respectively,
somatic polarity, excitability, and neuronal plasticity (12).
Considering the complex functioning of the brain, the
neurophysiology underlying tDCS is much more heterogeneous.
It can encompass the following: complex forms of plasticity,
involving distinct presynaptic and postsynaptic mechanisms
(long-term potentiation and depression), soma polarization,
dendrites, and synaptic terminals, axonal growth, network effects
(amplifications and oscillations), and functions of interneurons,
endothelial cells, and glia (13). Given the pathophysiological
complexity of PD and the variability of its symptoms, multiple
brain regions can modulate motor recovery, and consequently,
the methods of applying tDCS can be diverging.

Previous reviews investigated tDCS and associated therapies
(14–19), but tDCS alone is still a challenge to determine its
clinical effect on PD (15). Thus, this systematic review and meta-
analysis investigated the use of tDCS on PD based on the PICOS
model: population (P): adult patients with PD; intervention (I):
tDCS alone in different brain areas and number of stimulated
nominal targets; comparison (C): control condition, placebo or
sham; outcomes (O): PD motor symptoms; types of studies (S):
clinical trials randomized or not with crossover or parallel design
and open-label studies.

METHODS

Protocol and Registration
A systematic review with meta-analysis and meta-regression
was performed according to the Cochrane group (20), including
review mechanisms, inclusion or exclusion criteria, search and
selection of articles, analysis of the methodological quality
of included studies, data extraction, and meta-analysis of
results. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines were adopted (21).
The selection of studies was performed by two independent
reviewers (PCAO and TABA) according to the previously
structured eligibility criteria. Disagreements between reviewers
were resolved by a third reviewer (DGSM). The current review
protocol was registered in the International Prospective Register
of Systematic Reviews – PROSPERO–(https://www.crd.york.
ac.uk/prospero/) under the publicly available registry number
CRD42020188010 (https://www.crd.york.ac.uk/prospero/
display_record.php?ID=CRD42020188010).
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Search Strategy
The following databases were used for this review’s literature
survey: Cochrane Library, EMBASE, PubMed/MEDLINE,
Scopus, and Web of science, and considered the literature
until February 2021. The terms MeSh and operators Booleans
were as follows: “Parkinson’s disease” OR “Parkinson’s disease”
AND “transcranial direct current stimulation” OR “tDCS” OR
“transcranial electrical stimulation” OR “non-invasive brain
stimulation” OR “neuromodulation.” In addition, the reference
lists of selected articles and literature reviews on the subject
were checked to retrieve articles that were not covered by the
database searches.

Eligibility Criteria
The search was carried out for full text articles, peer-reviewed,
published in scientific journals without language restriction.
However, only studies in English were found. To be included,
studies should (a) include adults (over 18 years of age) with
a clinical diagnosis guided by the Movement Disorder Society
diagnostic criteria for PD (5), all types and levels of severity
or by a clinical definition; (b) apply a-tDCS or c-tDCS; (c)
report motor outcome data only from individuals with PD; (d)
report data on motor outcomes only from the intervention with
tDCS alone (for studies involving multiple interventions); (e)
provide quantitative data for at least one of the outcomemeasures
(in the manuscript or upon request); (f) have randomized
and non-randomized clinical trials with parallel, crossover, or
open-label design; and (g) have a sham or control condition.
Studies involving research on animals, in vitro or computational
models, were excluded. The agreement between reviewers for the
screening of studies was analyzed using the Kappa (K) statistic,
and the results revealed an “excellent” agreement (K = 0.969; p<

0.0001). The percentage of agreement between the reviewers was
99.9%, and the third reviewer’s tie was 0.1%.

Study Quality Assessment
The evaluation of the internal validity and presentation of
necessary statistical information of the studies was performed
by two independent reviewers (PCAO and TABA), who used
the classification scale of the Physiotherapy Evidence Database
(PEDro) (22). The PEDro scale consists of 11 items that assess the
followings: (1) eligibility criteria, (2) randomness of groups, (3)
secret allocation, (4) homogeneity between groups, (5) blinding
of participants, (6) blinding of therapists, (7) evaluator blinding,
(8) key outcome in more than 85% of subjects, (9) intention-to-
treat analysis, (10) statistical comparison between groups, and
(11) precisionmeasure and variabilitymeasures. The PEDro scale
is one of the most used instruments in rehabilitation to assess
the methodological quality of clinical trials (23, 24). Thus, it
is a measure with sufficient validity to be used in systematic
reviews of clinical trials and clinical practice guidelines (22). The
classification of the PEDro score was as follows: scores from 0 to
4= low quality; 4 to 5= acceptable quality; 6 to 8= good quality,
and 9 to 10= excellent quality (25).

The risk of bias was evaluated using the Cochrane risk of
bias assessment (26), which assesses the followings: (a) random
sequence generation, (b) allocation concealment, (c) blinding of

participants and personnel, (d) blinding of outcome assessment,
(e) incomplete outcome data, (f) selective reporting, and (g) other
biases. Each item was classified as “low risk of bias” (“+”), “high
risk of bias” (“–”) or “uncertain risk of bias” (“?”). Disagreements
were resolved by a third reviewer (DGSM).

Data Extraction
Data extraction included sample size (number of individuals
involved), participant characteristics [age, gender, time since PD
diagnosis, Unified Parkinson’s Disease Rating Scale (UPDRS) at
baseline, medication, most affected hemibody, stage Hoehn and
Yahr (HY)], intervention protocol (number of sessions, location
of electrodes, anodic or cathodic, intensity, density, and duration
of stimulation), and outcome measures (gait, motor function,
motor aspects of daily life, dyskinesia, motor fluctuations,
bradykinesia, manual dexterity, upper limb function, balance,
postural stability, and freezing of gait) from all included studies.
Missing article data were requested by email, and those who did
not respond after three attempts or did not provide data for any
reason were excluded from the meta-analysis. Thus, we excluded
15 articles from the quantitative synthesis, 11 for lack of response
(27–37) and 4 for not having or not providing the data (38–41).

Quantitative Analysis
Quantitative synthesis was performed by combining individual
studies into meta-analyses. We performed analyses comparing
the effect of tDCS alone on motor symptoms according to
the nominal stimulated target and compared the effect on
single or multiple targets. To estimate the effect, we used
continuous post-intervention mean and standard deviation data.
We calculated the mean difference (MD) or the standardized
mean difference (SMD), if the studies assessed the same outcome
using different scales, confidence interval (CI) of 95% for
each comparison, weighted by the inverse variance method
using an effects model random or fixed-effects model, when
applicable. Heterogeneity was assessed using chi-square (p <

0.1 = statistically significant), I² (I² > 75% = significant) and
visual inspection of forest plots. If considerable heterogeneity was
identified (chi-square p < 0.10; I² > 75%), only a qualitative
synthesis would be presented. Review Manager v.5.3 software
(Copenhagen: Nordic Cochrane Center) was used for all data
analysis, except for the meta-regression, performed in Python.
The univariate meta-regression model used a sensitivity analysis
to investigate possible effect moderators related to treatment
characteristics (number of sessions and cumulative time). One
predictor variable was analyzed at a time, and values of p < 0.05
were considered significant.

RESULTS

Overview
This review comprises the range from 1984 to February
2021. The PRISMA flow diagram summarizes steps in the
study identification procedures (Figure 1). The literature search
identified 6,386 studies, and Mendeley software excluded 146
duplicates. No study was included based on verifying the
reference lists of selected articles or literature reviews on the
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FIGURE 1 | PRISMA flowchart of included studies.

subject. Forty studies were eligible for full-text reading after
evaluating titles and abstracts. The two most frequent causes
of exclusion were an absence of a comparator and tDCS as
a combined therapy. Another four studies were excluded after
the analysis of abstracts. Studies that investigated non-motor
outcomes after tDCS were also checked for the existence of motor
outcomes for inclusion in the meta-analytic analysis. Finally,
25 studies involving 405 participants met our criteria and were
included in the qualitative synthesis. Of those, 10 were included
in the meta-analysis, covering a total of 236 participants.

Characteristics of Included Studies
Table 1 summarizes information of included studies, which
investigated the effect of tDCS alone on the motor symptoms of
PD. According to this table, 20 (80%) studies were randomized
(27–29, 32, 34, 36–40, 42–51), four (16%) did not mention
this information (31, 33, 35, 41) and one (4%) used pseudo-
randomization (30). Twenty studies (80%) had a crossover design
(28–37, 40, 41, 43, 44, 46–51) and five (20%) parallel (27, 38,
39, 42, 45). One (4%) study did not contain information about
blinding (39), three (12%) trials had single-blind experiments
(33, 44, 50), 20 (80%) double-blind experiments (27–32, 34, 36–
38, 40–43, 45–51) and one (4%) double blind in only one of the
experiments (35). Regarding the comparator group, 24 studies

(96%) had a sham group (27–38, 40–51) and one (4%) had a
control group, which did not undergo any type of therapy (39).

Characteristics of Participants
In total, 25 studies included 405 individuals with PD, and the
mean sample size was 17.64 ± 7.40 (ranging from 7 to 26
participants), aged between 58 and 74 years. HY obtained a
minimum score of 1.3 and a maximum of 2.8, indicating early
to almost moderate stages of PD. The UPDRS II achieved a
minimum score of 1.1 and a maximum of 11.6, a UPDRS III
minimum of 13 and a maximum of 39.7, and a minimum of 16
and a maximum of 74.2 on UPDRS’s total score. The duration of
PD had a minimum of 4.3 and a maximum of 12.3 years whereas
the dose of the medication had a minimum of 292.8mg and a
maximum of 1287.7mg. Twenty-two (88%) studies performed
the experiment in the ON state of the medication (27–35, 37–
39, 41, 43–51), two (8%) in the OFF state (36, 40) and one (4%)
in both states (42). Details of the participants of each study are
shown in Table 2.

tDCS Protocols
Three (12%) studies stimulated multiple targets, and 22
studies (88%) stimulated single nominal target with dorsolateral
prefrontal cortex (DLPFC) and primary motor cortex (M1)
as the most common montages (Figure 2). In addition, most
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TABLE 1 | Characteristics of the included studies.

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Albuquerque et al.

(27)

Parallel PGT, AMT NO 1 (+): cerebellum &

(–): buccinator

muscle

Single 2mA, 25min, ND Motor

performance (=) in

hand and arm

tasks

Benninger et al.

(42)

Parallel 10MWT, Hand and

arm movements

(bradykinesia),

UPDRS, SRTT

1 and 3 months 8 (+): PMC and MC

& (–): Mastoids

and (+): PFC & (–):

Mastoids Sham:

(+) and (–) 1 cm

apart over the

forehead, two

additional

electrodes

inversely over the

mastoids (not

connected to the

stimulator)

Multi 2mA, 20min,

0.021 mA/cm²

↓ in walking time

(ON and OFF) until

1 month later in

the ON group

improvement in

bradykinesia (ON

and OFF) for more

than 3 months (=)

for UPDRS, SRTT

Beretta et al. (28) Cross UPDRS, Postural

control

assessment, EMG,

fNIRS, MMSE

NO EMG and CoP

temporal

parameters: (↓)

recovery time x

sham

Exp 1 1 (+): M1

hemisphere

contralateral to the

most affected

body side & (–):

over the

contralateral

supraorbital

Single 1mA, 20min, ND

Exp 2 1 (+): M1

hemisphere

contralateral to the

most affected

body side & (–):

over the

contralateral

supraorbital

Single 2mA, 20min, ND EMG and CoP

temporal

parameters: (↓)

onset latency with

2mA, (↓) recovery

time x sham

Bueno et al. (43) Cross TUG, video gait

analysis

NO 1 (+): L-DLPFC &

(–): R-frontal areas

Single 2mA, 20min,

0.057 mA/cm²

(=) TUG and video

gait analysis

(Continued)
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TABLE 1 | Continued

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Cosentino et al.

(29)

Cross FT, upper limb

bradykinesia test,

UPDRS III

NO 2 (+): M1 & (–):

contralateral

orbitofrontal

cortex; (+):

contralateral

orbitofrontal cortex

& (–): M1

Single 2mA, 20min, ND a-tDCS in most

affected M1:

improvement in FT,

(↓) in Upper Limb

Bradykinesia test

time in both hands,

(↓) in UPDRS III

c-tDCS in less

affected M1:

improvement in FT,

(↓) in Upper Limb

Bradykinesia test

time in both hands

c-tDCS in most

affected M1: (↑) at

the time of the

upper limb

bradykinesia test

Criminger et al.

(44)

Cross TUG NO 1 (+): L-DLPFC &

(–): R-DLPFC

Single 2mA, 20min, ND (=) TUG

da Silva et al. (45) Parallel Gait kinematics

analysis, UPDRS III

NO 1 (+): M1 and SMA

& (–): over the

supraorbital area

ipsilateral to the

most affected side

Multi 2mA, 15min, ND (↓) in gait cadence

Dagan et al. (46) Cross TUG,

FOG-provoking

test

NO 2 (+): M1 motor

leg-area & (–): ND;

(+): L- DLPFC and

M1 & (–): ND

Single & Multi 2mA, 20min, ND a-tDCS in M1 +

DLPFC: (↓) in

FOG-Provoking

Test and TUG

Doruk et al. (38) Parallel UPDRS III, sRT,

4-CRT, PPT, FT,

WT, BU, SP

1 month 10 (+): L-DLPFC &

(–): R-frontal areas;

(+): R-DLPFC &

(–): L-frontal areas

Single 2mA, 20min, ND (=) motor function

Ferrucci et al. (47) Cross UPDRS III/IV 1 and 4 weeks 5 (+): M1 bilaterally

& (–): R-deltoid

muscle; (+):

cerebellum & (–):

R-shoulder

Single 2mA, 20min, ND a-tDCS in M1 and

cerebellum

improved

levodopa-induced

dyskinesias

(Continued)
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TABLE 1 | Continued

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Fregni et al. (30) Cross UPDRS, sRT, PPT NO 1 (+): M1 dominant

hemisphere & (−):

contralateral

orbitofrontal cortex

(+): contralateral

orbitofrontal cortex

& (–): M1 dominant

hemisphere (+):

DLPFC & (–):

orbitofrontal cortex

Single 1mA, 20min, ND a-tDCS in M1:

improvement in

UPDRS and sRT,

(=) for PPT

a-tDCS in DLPFC:

significant main

effect for UPDRS

and sRT, (=) for

PPT

c-tDCS in M1: (=)

for UPDRS, sRT

and PPT

Kaski et al. (48) Cross 6MWT, gait

velocity, stride

length, TUG, pull

test

NO 1 (+): M1 (leg areas,

10–20% anterior

to Cz) & (–): inion

Single 2mA, 15min, ND (=) gait speed,

stride length, TUG,

6MWT and pull

test

Lattari et al. (49) Cross BBS, DGI, TUG NO 1 (+): L-DLPFC &

(–): R-frontal areas

Single 2mA, 20min, ND a-tDCS improves

balance and

functional mobility

x sham-tDCS

Lawrence et al.

(39)

Parallel UPDRS II week 12 4 (+): L-DLPFC &

(–): above the left

eye

Single 1.5mA, 20min,

ND

Isolated tDCS did

not generate

significant

improvement in

any motor test

Lu et al. (40) Cross UPDRS III, gait

initiation on the

force platform

NO 1 (+): SMA & (–): Fp Single 1mA, 10min,

0.123 mA/cm²

a-tDCS did not

improve self-start

gait in PD and

FOG

Manenti et al. (31) Cross TUG NO 1 (+): L-DLPFC &

(–): R-frontal areas;

(+): R-DLPFC &

(–): L-frontal areas

Single 2mA, 7min, 0.057

mA/cm²

(↓) Selective on

TUG reaction

times after a-tDCS

on R-DLPFC and

(=) L-DLPFC

(Continued)
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TABLE 1 | Continued

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Mishra and

Thrasher (32)

Cross GAITRite (velocity),

phoneme verbal

fluency task

15 and 30min 1 (+): L-DLPFC &

(–): R-frontal areas

Single 2mA, 30min, ND a-tDCS x sham in

the dual task:

participants

walked faster

and generated

a (↑) number of

words/min, at 15

and 30min after

stimulation

The cost of dual

task associated

with gait speed

was significantly

(↓) 15min after

Single task: (=) for

gait and cognitive

performance

Putzolu et al. (33) Cross GAITRite NO 1 (+): L-DLPFC &

(–): R-frontal areas

Single 1.5mA, 20min,

ND

Improvement in

gait performance

during cognitive

dual task in the

FOG group

Putzolu et al. (34) Cross GAITRite NO 1 (+): L-DLPFC (–):

orbitofrontal cortex

Single 1.5mA, 20min,

ND

Improved stride

length, stride

speed and double

support time

Salimpour et al.

(35)

NO (↓) on signal-

dependent noise in

the most affected

arm

(↑) on patients’

willingness to

assign strength to

the most affected

arm and

improvement of

motor symptoms

Exp 1 Cross Isometric task,

UPDRS III

NO 1 (+): L-M1 & (–):

R-M1

Single 1mA, 25min, 0.04

mA/cm²

-

(Continued)
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TABLE 1 | Continued

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Exp 2 Cross Isometric task,

UPDRS III

NO 1 (+): R-M1 & (–):

L-M1

Single 2mA, 25min, 0.08

mA/cm²

(↓) in the subjective

cost of force

(↑) in the

willingness to

assign force to the

affected side

(↓) in noise

laterality

Exp 3 Cross Isometric task,

UPDRS III

NO 2 (+): M1

contralateral to the

affected side & (–):

M1 contralateral to

the affected side

Single 2mA, ND, 0.08

mA/cm²

(↑) in the

willingness to

give strength to

the affected side

(↓) in the laterality

index

(↓) at UPDRS

Exp 4 Cross Isometric task,

UPDRS III,

PDQ-39

NO 5 (+): M1 ipsilateral

& (–): M1

contralateral to the

affected side

Single 2mA, ND, 0.08

mA/cm²

c-tDCS x

sham: further

improvements in

the laterality index

(↓) higher in the

subjective cost of

strength in the

affected arm

change in

one-hand noise

significant effect

on UPDRS

improvement in

PDQ-39

Schoellmann et al.

(36)

Cross UPDRS III, EMG,

EEG

30min 1 (+): M1 & (–):

R-frontal areas

Single 1mA, 20min,

<0.1 mA/cm²

Clinical motor

improvement of

the UPDRS III

subtotal (items

22–25) of the MSD

lasting at least 30

min

(Continued)
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TABLE 1 | Continued

References Design Outcome

measures

Follow-up N sessions Nominal target Target tDCS Set-up Results

Swank et al. (50) Cross TUG, PDQ-39,

UPDRS

NO 1 (+): L-DLPFC &

(–): R-DLPFC

Single 2mA, 20min, ND (=) TUG or

PDQ-39

Valentino et al. (37) Cross UPDRS III and

total, SWS,

FOG-Q, GFQ

2 days, 2 and 4

weeks

5 (+): M1 (leg area

that starts walking)

& (–): contralateral

orbitofrontal cortex

Single 2mA, 20min, ND Improved gait

(↓) on the number

and duration of

FOG episodes

(↓) in total UPDRS

and III

Verheyden et al.

(41)

Cross STS, FR, SS180,

TUG, 10MWT

NO 1 (+): M1 of the

dominant

hemisphere & (–):

contralateral

orbitofrontal cortex

Single 1mA, 15min, ND (↓) of speed at

10MWT no

immediate effects

and, in fact, a

possible decline in

motor

performance

Workman et al.

(51)

Cross 25FWT, TUG,

6MWT, BBS,

Posturography

NO 1 Unilateral (+):

Hemisphere

cerebellar more

affected & (–):

Contralateral

upper arm Bilateral

(+): Hemisphere

cerebellar more

affected & (–):

hemisphere

cerebellar

contralateral

Single 2mA, 20min, 0.06

mA/cm² 4mA,

20min, 0.11

mA/cm²

4mA bilateral: (↑)

on the BBS

N, number; PGT, precision grip task; AMT, arm movement task; mA, milliamps; min, minutes; ND, not described; 10MWT, 10m; UPDRS, Unified Parkinson’s Disease Rating Scale; walk test; SRTT, serial reaction time task; PMC,

premotor cortex; MC, motor cortex; PFC, prefrontal cortex; EMG, electromyography; fNIRS, functional near-infrared spectroscopy; MMSE, mini mental state examination; CoP, center of pressure; Exp, experiment; M1,primary motor

cortex; TUG, timed up and go; L, left; DLPFC, dorsolateral prefrontal cortex; R, right; FT, finger tapping; a-tDCS, anodal transcranial direct current stimulation; c-tDCS, cathodal transcranial direct current stimulation; SMA, supplementary

motor area; FOG, freezing of gait; sRT, simple reaction time; 4-CRT,4-choice reaction time; PPT, Purdue Pegboard test; WT, walking time; BU, buttoning-up; SP, supination–pronation; 6MWT, six-min walk test; BBS, Berg Balance

Scale; DGI, Dynamic Gait Index; Fp, frontal polar; PD, Parkinson’s disease; GAITRite, gait assessment system; PDQ-39, Parkinson’s Disease Questionnaire 39 Items; EEG, electroencephalography; MSD, superior right member; SWS,

stand–walk–sit; FOG-Q, Freezing of Gait Questionnaire; GFQ, Gait and Fall Questionnaire; STS, sit-to-stand; FR, functional reach; SS180, standing-start 180 degrees turning; 25FWT,25-foot walk test; Cross, crossover design; parallel,

parallel design; Single, single target; Multi, multiple targets; (↑), increase; (↓), decrease; (=), equal.
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TABLE 2 | Characteristics of participants.

References Sample (W/M) Age (years) Hoehn and Yahr Duration of

disease (years)

UPDRS at

baseline

Medication (mg) Most affected

hemibody (Right,

Left, Bilateral)

ON/OFF phase

Albuquerque et al.

(27)

22 (10 W/12M) 71.3 ± 8.6 Active: 2.3 ± 0.65

Sham: 2.0 ± 0,63

ND Active: 24.7 ± 5.7

Sham: 28.4 ±

12.1 (ND)

Active: 584.8 ±

516.2 Sham:

468.5 ± 193.7

20R/2L ON

Benninger et al.

(42)

25 (9 W/16M) 63.9 ± 8.7 Active: 2.5 ± 0.1

Sham: 2.4 ± 0.2

Active: 10.6 ± 7.1

Sham: 9.1 ± 3.3

Active: 42.5 ±

10.8 Sham: 39.5

± 12.8 (total)

Active: 22.2 ± 8.7

Sham: 17.5 ± 8

(III)

Active: 1024.3 ±

541.5mg Sham:

1287.7 ±

808.8mg

ND ON/OFF

Beretta et al. (28) 24 (10 W/14M) 68.91 ± 8.47 ND 4.84 ± 3.11 36.00 ± 14.32 (III) 545.01 ±

288.59mg

ND ON

Bueno et al. (43) 20 (8 W/12M) 64.45 ± 8.98 2.25 ± 0.63 7.80 ± 5.32 11.60 ± 4.00 (II)

22.35 ± 6.77 (III)

33.95 ± 9.44

(total)

ND ND ON

Cosentino et al.

(29)

14 (6 W/8M) 58 ± 12.1 ND ND ND 386.2 ± 233.5mg 11R/3L ON

Criminger et al.

(44)

16 (4 W/12M) 68.13 ± 9.76 2 ± ND 8.69 ± 9.76 40.31 ± 18.27

(total) 23.44 ±

9.73 (III)

ND ND ON

da Silva et al. (45) 17 (7 W/10M) Active: 66 ± 5

Sham: 66 ± 10

2.35 ± 0.29 Active: 6 ± 6

Sham: 5 ± 1

ND ND ND ON

Dagan et al. (46) 20 (3 W/17M) 68.8 ± 6.8 2.5 ± 0.6 9.0 ± 5.7 74.2 ± 23.3 (total)

39.7 ± 14.6 (III)

554.7 ± 401.1mg ND ON

Doruk et al. (38) 18 (6 W/12M) 61 ± 8 ND ND ND ND ND ON

Ferrucci et al. (47) 9 (4 W/5M) 74.33 ± 7.98 2.5 ± 0.35 10.77 ± 2.1 Active Cerebellar:

13 ± 4.9 Active

M1: 13 ± 4.8

Sham: 13.3 ± 4.8

(III)

ND ND ON

Fregni et al. (30) 17 (6 W/11M) 62.3 ± 1.6 2.4 ± 0.2 12.3 ± 1.6 37.4 ± 3.9 (III) 615.0 ± 63.1mg 9R/8L ON

Kaski et al. (48) 8 (ND) ND ND ND 25.8 ± 5.74 (total) ND ND ON

Lattari et al. (49) 17 (4 W/13M) 69.18 ± 9.98 2.35 ± 1.06 7.06 ± 2.70 18.0 ± 8.96 (III) 748.29 ±

343.80mg

ND ON

(Continued)
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TABLE 2 | Continued

References Sample (W/M) Age (years) Hoehn and Yahr Duration of

disease (years)

UPDRS at

baseline

Medication (mg) Most affected

hemibody (Right,

Left, Bilateral)

ON/OFF phase

Lawrence et al.

(39)

tDCS: 7 (5 W/2M)

control: 7 (4

W/3M)

tDCS: 72 ± 6.45

control: 72.29 ±

6.21

ND tDCS: 5.50 ± 5.66

control: 5.36 ±

4.14

tDCS: 1.27 ± 0.56

(II) control: 1.18 ±

0.69 (II)

tDCS: 573.29 ±

586.25 control:

292.88 ± 274.51

ND ON

Lu et al. (40) 10 (3 W/7M) 66.3 ± 9.9 2.7 ± 0.4 7.7 ± 4.0 39.2 ± 17.2 (III) 761.0 ± 362.2mg ND OFF

Manenti et al. (31) 10 (4 W/6M) 67.1 ± 7.2 1.3 ± 1.1 8.1 ± 3.5 13.3 ± 5.7 (III) 749.2 ± 445.5mg 2R/8L ON

Mishra and

Thrasher (32)

20 (6 W/14M) 67.8 ± 8.3 1.9 ± 0.9 4.8 ± 3.8 ND ND ND ON

Putzolu et al. (33) 20: FOG+ (4

W/6M) FOG- (5

W/5M)

FOG+: 70.1 ±

3.84 FOG-: 72.8 ±

6.87

ND FOG+: 9.3 ± 5.5

FOG-: 7.2 ± 5.2

FOG+: 20.1 ± 8.4

(III) FOG-: 22.9 ±

8.1 (III)

ND ND ON

Putzolu et al. (34) 21: FOG+ (4

W/6M) FOG- (4

W/7M)

FOG+: 69.20 ±

5.20 FOG-: 70.36

± 6.23

FOG+: 2.05 ±

0.44 FOG-: 1.77 ±

0.52

FOG+: 8.00 ±

5.50 FOG-: 5.82 ±

5.29

FOG+: 39.30 ±

11.39 (total) FOG-:

36.27 ± 16.58

(total) FOG+:

18.60 ± 6.38 (III)

FOG-: 20.45 ±

8.15 (III)

ND ND ON

Salimpour et al.

(35)

ON

Exp 1 10 (4 W/6M) 59.6 ± 6.68 1.75 ± 0.54 6.9 ± 4.6 15.7 ± 4.8 (III) 515 ± 274.92 10R/0L

Exp 2 10 (2 W/8M) 61.6 ± 10.76 1.75 ± 0.63 8.5 ± 5.8 18.6 ± 6.09 (III) 655 ± 434.90 10R/0L

Exp 3 10 (4 W/6M) 60.5 ± 9.16 1.85 ± 0.47 8.3 ± 4.13 24.6 ± 11.21 (III) 740 ± 500.99 8R/1L/1B

Exp 4 8 (3W/5M) 59.37 ± 9.00 1.5 ± 0.46 6.87 ± 4.96 17.62 ± 4.47 (III) 712.5 ± 470.37 6R/2L

Schoellmann et al.

(36)

10 (4 W/6M) 64.3 ± 11.4 ND 8.6 ± 4.1 ND 749.15 ±

423.99mg

7R/3L OFF

Swank et al. (50) 10 (2W/8M) 68.7 ± 10.2 2 ± ND 7.9 ± 7.1 37.0 ± 12.9 (total)

24.30 ± ND (III)

ND ND ON

Valentino et al. (37) 10 (5 W/5M) 72.3 ± 3.6 2.8 ± 0.5 11 ± 4.9 32 ± 10.3 (III) ND 4R/6L ON

Verheyden et al.

(41)

20 (ND) 71 ± 7 ND 9 ± 4 16 ± 5 (total) ND ND ON

Workman et al.

(51)

7 (2W/5M) 72.4 ± 6.4 1.9 ± 0.4 4.3 ± 2.5 32.6 ± 14.2 (III) 889.8 ± 497.7mg 1R/6L ON

W, women; M, men; UPDRS, Unified Parkinson’s Disease Rating Scale; mg, milligrams; ND, not described; R, right; L, left; FOG, freezing of gait; Exp, experiment.
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Oliveira et al. tDCS Effect on Parkinson’s Disease

FIGURE 2 | Quantity of tDCS studies on PD using single nominal targets, and

example of M1 anodal electrode on C3.

studies performed single tDCS session (66.7%), and others used
2 (11.1%), 4 (3.7%), 5 (11.1%), 8 (3.7%), and 10 sessions (3.7%).
Twenty-two trials (88%) applied anodal tDCS (27, 28, 31–
34, 36–51), whereas three (12%) performed anodal tDCS and
cathodal tDCS (29, 30, 35). The minimum current intensity was
1mA, the maximum was 4mA, and the mean duration time of
stimulation per session was 19.28± 4.47min (minimum of 7min
and maximum of 30min). Finally, 18 (72%) studies performed
pre- and postintervention assessments (27–31, 33–35, 40, 41,
43–46, 48–51), whereas seven (28%) also performed follow-up
evaluations (range from 15min to 3 months) (32, 36–39, 42, 47).

Motor Outcome Result Measures
Gait was analyzed in 17 (68%) of those studies (31–34, 37, 38, 40–
46, 48–51) and which was evaluated by the timed up and go
(TUG) test, 10-m walk test, video analysis and pressure platform,
six-min walk test, stand–walk–sit test, 25-foot walk test, and
Dynamic Gait Index. Thirteen studies (52%) also investigated the
effect of tDCS alone on UPDRS scores (28–30, 35–40, 42, 45, 47,
50), on bradykinesia, manual dexterity, and upper limb function
(27, 29, 30, 35, 38, 42). Balance or postural stability was analyzed
in five (20%) studies (28, 41, 48, 49, 51) and freezing of gait (FOG)
in other three (12%) studies (37, 40, 47).

Quality of Included Studies
Internal validity and necessary statistical information were
evaluated using the PEDro scale and obtained a mean score of
8.28 ± 1.24, which reveals a good methodological quality of the
studies (25). Details of the scores for each study are shown in
Table 3.

The results of risk of bias indicate a low or unclear risk
for most studies except for allocation concealment that was
considered high. Details of risk of bias of each study are shown
in Figure 3.

Meta-Analysis Results
Single Nominal Targets on Motor Symptoms

UPDRS III–Motor Aspects
This analysis included one study (47) and two experiments
divided by nominal target, namely M1 and cerebellum. A total
of nine participants were involved and randomly assigned to one
stimulation protocol at once. There was no significant effect of
tDCS on motor aspects measured by the UPDRS III. Analyzing
the combined effect of these areas (MD = −0.98%, 95% CI
= −10.03 to 8.07, p = 0.83, I² = 0%, without significant
heterogeneity and fixed-effects model), there was no significant
effect about isolated areas (Figure 4A).

UPDRS IV—Dyskinesias
One study (47) enrolled 09 participants and conducted two
experiments in which nominal targets, M1 and cerebellum, were
stimulated. There was no significant effect between tDCS and
dyskinesias assessed by the UPDRS IV. Furthermore, analyzing
the combined effect of these areas (MD = −0.89%, CI 95%
= −3.82 to 2.03, p = 0.55, I² = 0%, without significant
heterogeneity and fixed-effects model), there was also no
significant effect in the analysis of isolated areas (Figure 4B).

UPDRS IV—Motor Fluctuations
Two experiments divided by nominal targets included M1 (47)
and cerebellum (47). A total of 09 participants were involved and
randomly assigned toM1, cerebellum or sham stimulation. There
was no significant effect of tDCS in relation tomotor fluctuations,
measured by the UPDRS IV. Analyzing the combined effect of
these areas (MD=−0.67%, CI 95%=−2.45 to 1.11, p= 0.46, I²
= 0%, without significant heterogeneity and fixed-effects model),
there was also no significant effect in the analysis of isolated areas
(Figure 4C).

TUG—Gait
We analyzed 98 participants distributed in seven studies, grouped
by areas of stimulation, namely DLPFC (43, 44, 49, 50), M1
(46, 48) and cerebellum (51). There was no significant effect
of tDCS in relation to gait, measured by TUG. Analyzing the
combined effect of these areas (MD = 0.14%, CI 95% = −0.72
to 0.99, p = 0.75, I² = 0%, without significant heterogeneity and
random effects model), there was also no significant effect in the
analysis of isolated areas (Figure 4D).

Berg Balance Scale—Balance
We compared 24 participants and protocol stimulations
distributed in two studies, divided according to the areas of
DLPFC (49) and cerebellum (51). There was no significant effect
of tDCS related to balance, measured by the BBS. Analyzing the
combined effect of these areas (MD = 0.73%, CI 95% = −1.01
to 2.47, p = 0.41, I² = 0%, without significant heterogeneity
and random effects model), there was no significant effect in the
analysis of isolated areas (Figure 4E).
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TABLE 3 | PEDro scale.

Total Items

1 2 3 4 5 6 7 8 9 10 11

Albuquerque et al. (27) 8 1 0 0 1 0 1 1 1 1 1 1

Benninger et al. (42) 9 1 1 0 1 1 0 1 1 1 1 1

Beretta et al. (28) 9 1 1 0 1 1 0 1 1 1 1 1

Bueno et al. (43) 10 1 1 1 1 1 0 1 1 1 1 1

Cosentino et al. (29) 9 1 1 0 1 1 0 1 1 1 1 1

Criminger et al. (44) 8 1 1 0 1 1 0 0 1 1 1 1

da Silva et al. (45) 10 1 1 1 1 1 0 1 1 1 1 1

Dagan et al. (46) 9 1 1 0 1 1 0 1 1 1 1 1

Doruk et al. (38) 9 1 1 0 1 1 0 1 1 1 1 1

Ferrucci et al. (47) 9 1 1 0 1 1 0 1 1 1 1 1

Fregni et al. (30) 8 1 0 0 1 1 0 1 1 1 1 1

Kaski et al. (48) 8 1 1 0 0 1 0 1 1 1 1 1

Lattari et al. (49) 9 1 1 0 1 1 0 1 1 1 1 1

Lawrence et al. (39) 7 1 1 0 1 0 0 0 1 1 1 1

Lu et al. (40) 9 1 1 0 1 1 0 1 1 1 1 1

Manenti et al. (31) 8 1 0 0 1 1 0 1 1 1 1 1

Mishra and Thrasher (32) 8 0 1 0 1 1 0 1 1 1 1 1

Putzolu et al. (33) 6 0 1 0 1 1 0 0 0 1 1 1

Putzolu et al. (34) 9 1 1 0 1 1 0 1 1 1 1 1

Salimpour et al. (35) 4 0 0 0 0 1 0 0 0 1 1 1

Schoellmann et al. (36) 8 1 1 0 1 1 1 0 0 1 1 1

Swank et al. (50) 8 1 1 0 1 1 0 0 1 1 1 1

Valentino et al. (37) 9 1 1 0 1 1 0 1 1 1 1 1

Verheyden et al. (41) 8 1 0 0 1 1 0 1 1 1 1 1

Workman et al. (51) 8 0 1 0 1 1 0 1 1 1 1 1

Items: (1) eligibility criteria, (2) group randomness, (3) secret allocation, (4) homogeneity between groups, (5) blinding of participants, (6) blinding of therapists, (7) blinding of evaluators,

(8) key result in more than 85% of individuals, (9) analysis of the intention to treat, (10) statistical comparison between groups, and (11) precision measure and variability measures.

Single and Multiple Nominal Targets on Motor

Symptoms

UPDRS III—Motor Aspects
We analyzed three studies and four experiments, with 51
participants, grouped according to the number of stimulation
areas: single target (47) and multiple targets (42, 45). There was
no significant effect of tDCS in relation to the motor aspects
assessed by the UPDRS III. Analyzing the combined effect of
these areas (MD= 2.05%, CI 95%=−1.96 to 6.06, p= 0.32, I²=
0%, no heterogeneity and random effects model), there was also
no significant effect in the analysis of isolated areas (Figure 5A).

Gait
In this analysis, we included 10 studies, with 98 participants,
grouped by the amount of stimulation areas: single target (43, 44,
46, 48–51) and multiple targets (42, 45, 46). The investigation did
not show a significant effect of tDCS, regardless of the number
of nominal targets stimulated, in relation to gait. Analyzing the
combined effect of these areas (SMD=−0.05%, 95% CI=−0.28
to 0.17, p = 0.64, I² = 0%, without significant heterogeneity and
random effects model), there was also no significant effect in the
analysis of isolated areas (Figure 5B).

Meta-Regression
Simple univariate meta-regression analysis was performed by
a blinded investigator (ACRN) using Python “Pymare” library
to investigate the association between effect size and treatment
dosage considered as the number of sessions and cumulative
time. Analysis revealed that the number of sessions was not
significantly associated with effect size (estimate = −1.7, SE =

1.51, z-score=−1.18, p= 0.2, CI=−4.75 to 1.17). The analysis
also revealed that cumulative time was also not significantly
associated with effect size (estimate = −0.07, SE = 0.07, z-score
=−0.99, p= 0.31, CI=−0.21 to 0.07).

DISCUSSION

This systematic review with meta-analysis and meta-regression
includes 25 studies with 405 participants and investigated the
effect of tDCS on the motor symptoms of PD. Our results
demonstrated that there was no significant effect of tDCS on
short-term motor symptoms of PD, regardless of brain area,
number of stimulated nominal targets, or treatment dosage.
The regions most covered by the included studies were DLPFC
and M1.
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FIGURE 3 | Risk of bias graph (A) and risk of bias summary (B).

The DLPFC is a brain region commonly studied in tDCS
research to observe its effect on non-motor symptoms of PD,
but it has also been widely investigated in motor symptoms.
The justification includes several explanations: (a) the non-motor
symptoms influence the motor symptoms because cognitive
functions are needed to perform motor tasks and are partly
modulated by the DLPFC (31). An example of this relationship
is the execution of the gait, where the individual needs the ability
to perform a dual task (43); (b) DLPFC appears to interfere with
balance, through the attribution of the prefrontal cortex to spatial
orientation (52) in addition to its activation during gait in several
challenging conditions (53, 54). Thus, the hypothesis suggests
that modulating DLPFC can improve visuospatial processing that
improves the balance of individuals with PD (49). However, the
literature shows divergent results related to the stimulation of
this area to improve motor functions. Previous research (30, 38,
39, 43, 44, 50) found no significant effect of tDCS on DLPFC
for motor function, simple reaction time, aspects of isolated and
dual task gait, quality of life, or motor aspects of daily life. In

contrast, other studies (31, 33, 34, 49) found a beneficial effect
for walking alone and with dual task, FOG, functional mobility,
or balance. Finally, responses in DLPFC can activate distinct
networks of motor areas, such as M1, supplementary motor area,
and premotor area, which exert direct control over motor aspects
(55, 56). However, the possibility of cortical functioning through
a matrix cannot be excluded, as in pain processing (12, 57).

In turn, the M1 area is also a widely investigated target for
treatment of motor symptoms of PD, due to its primordial role
in motor control and learning (58). In summary, the disturbance
in the functioning of the basal ganglia causes cortical dysfunction
and promotes the motor symptoms of PD. Thus, the hypothesis
is that the modulation of cortical areas can drive changes in
the cortical–subcortical pathway, positively influencing the basal
ganglia, to correct such dysfunction and reduce symptoms (30).
However, the literature about tDCS in M1 shows divergences.
According to previous studies (29, 30, 35–37, 41, 47), tDCS in
M1 showed a significant effect on hand motor performance,
dyskinesia, gait, FOG, motor function, and simple reaction time,
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FIGURE 4 | Forest plot showing mean difference from the comparison between single targets in motor function—UPDRS III (A) and dyskinesias—UPDRS IV (B) and

motor fluctuations—UPDRS IV (C) and the gait—TUG (D) and balance—BBS (E). Risk of bias was deemed as “low risk of bias” (“+”), “high risk of bias” (“–”), or

“unclear risk of bias” (“?”).
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FIGURE 5 | Forest plot showing mean difference from the comparison between single targets vs. multitarget in motor aspects—UPDRS III (A) and standardized mean

difference in the gait (B). Risk of bias was deemed as “low risk of bias” (“+”), “high risk of bias” (“–”), or “unclear risk of bias” (“?”).

respectively. However, other studies (46, 48) did not obtain a
significant effect on gait and balance.

It is important to note that despite the inaccuracies in the
clinical effect, there is evidence that tDCS stimulates both the
target area and beyond (12). Neurophysiological mechanisms
may include changes in neuronal excitability, plasticity,
neuronal oscillations, and connectivity (12). Numerous
studies using electroencephalography (59–62), functional
magnetic resonance (57, 63–65), combination of transcranial

magnetic stimulation with electroencephalography (66, 67),
and functional near-infrared spectroscopy (68) have shown
brain changes after tDCS in M1 with modulation of this
neural network.

According to the meta-analysis, it is still not possible to
determine the number of nominal targets to be stimulated in
tDCS protocols to reduce motor symptoms in PD. Considering
pathophysiological mechanisms, chronic evolution, multisystem
repercussions, and varied symptoms, it is necessary to note
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the importance of functional rehabilitation combined with
additional approaches. The potential of tDCS at disease onset
is also relevant as most motor treatment is provided in the
early phase (during the 1st week and month) (69, 70). Here, we
provide some evidences that tDCS can improve motor function
in early-stage patients to some extent. In previous studies,
early stimulation of tDCS reduced cadence (45), upper limb
bradykinesia (29), FOG (46), and improved levodopa-induced
dyskinesia (47).

There is little evidence regarding the mechanisms of action
of tDCS in the pathophysiology of PD. However, our hypothesis
is that multiple sessions of tDCS associated with rehabilitation
training can activate brain regions by the task-related activity
and, therefore, make themmore sensitive to modulation by tDCS
(13). Different hypotheses can explain our results: a) few studies
involving PD, neuromodulation, and motor symptoms aimed
to assess the isolated effect of tDCS. Furthermore, studies that
proposed to investigate such aspects, an even smaller number
presented essential numerical data for a meta-analytic evaluation;
b) our meta-regression showed that the number and cumulative
time of sessions were not associated with tDCS effect size, which
may suggest insufficient corticospinal changes to increase motor
performance and such insufficiency may be associated with other
factors, including long interval of hours between applications
and longer application time, which can inhibit overstimulation
through neuronal counter-regulation, among others (71); (c) the
sample size of the included trials may have been limited to
provide an adequate effect size; and d) there is a lack of evidence
on the non-motor aspects of PD, which may influence the
effectiveness of tDCS on motor outcomes. Thus, it is likely that
cognitive processing is supported by several brain regions and
neural networks, which makes it challenging to identify specific
nominal targets to stimulate. Furthermore, our results cannot
be applicable to individuals in the OFF state of medication,
as most studies (88%) performed their research only in the
ON state.

This systematic review with meta-analysis and meta-
regression aimed to fill the gaps in the literature related to the
effect of tDCS on the motor symptoms of individuals with PD.
Based on the evidence from previous meta-analyses, our study
(a) provided a direct comparison between the effect sizes of
studies that used motor and non-motor cortical targets, (b)
compared the effects of single montages target vs. multitarget in
motor function, (c) included a larger set of important studies
(27, 28, 32, 34, 36, 40, 51) that bring relevant approaches to the
field under investigation and that were published after previous
reviews were carried out, and (d) analyzed the association of
certain therapeutic variables with tDCS effect size. The recent
evidence-based guidelines for neuromodulation target sites for
the treatment of motor function in PD concludes that anodal
tDCS over motor, premotor, and supplementary motor area is
likely to be effective (level C), whereas on the prefrontal cortex,
there is possibly no efficacy (level B) (15). Thus, considering the
gaps that still exist in the literature and seeking clarification in
future recommendations, further studies should include secret
allocation, adequate blinding, homogeneous comparison group,
sufficient sample size, application of tDCS in single and multiple

brain regions, shorter interval of hours between sessions, and
evaluation of the long-term effect on simple and complex motor
tasks. Finally, future studies could go beyond the target area and
investigate patterns of cortical activation at baseline and during
treatment to infer possible predictors of response to therapy.
A deeper look at the neurophysiological correlates in patients
with PD is needed, particularly to provide neurophysiological
evidence that cholinergic dysfunction may be an important and
early contributor to motor and cognitive dysfunction in PD.

CONCLUSION

In summary, this systematic review with meta-analysis and
meta-regression found no significant short-term effect of tDCS
alone on motor function, balance, gait, dyskinesia, and motor
fluctuations, regardless of brain area or number of stimulated
nominal targets in patients with PD. We also found no
relationship between the effect of tDCS alone and the number
of sessions or cumulative treatment time.
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