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Abstract: Preclinical studies have suggested that low-intensity transcranial focused ultrasound
(tFUS) may have therapeutic potential for Alzheimer’s disease (AD) by opening the blood–brain
barrier (BBB), reducing amyloid pathology, and improving cognition. This study investigated
the effects of tFUS on BBB opening, regional cerebral metabolic rate of glucose (rCMRglu), and
cognitive function in AD patients. Eight patients with AD received image-guided tFUS to the right
hippocampus immediately after intravenous injection of microbubble ultrasound contrast agents.
Patients completed magnetic resonance imaging (MRI), 18F-fluoro-2-deoxyglucose positron emission
tomography (PET), and cognitive assessments before and after the sonication. No evidence of
transient BBB opening was found on T1 dynamic contrast-enhanced MRI. However, immediate recall
(p = 0.03) and recognition memory (p = 0.02) were significantly improved on the verbal learning
test. PET image analysis demonstrated increased rCMRglu in the right hippocampus (p = 0.001).
In addition, increases of hippocampal rCMRglu were correlated with improvement in recognition
memory (Spearman’s ρ = 0.77, p = 0.02). No adverse event was observed. Our results suggest that
tFUS to the hippocampus of AD patients may improve rCMRglu of the target area and memory in
the short term, even without BBB opening. Further larger sham-controlled trials with loger follow-up
are warranted to evaluate the efficacy and safety of tFUS in patients with AD.

Keywords: transcranial focused ultrasound; Alzheimer’s disease; regional cerebral metabolic rate of
glucose; cognition; blood–brain barrier

1. Introduction

Alzheimer’s disease (AD) is characterized by progressive neurodegeneration with
cognitive and functional declines [1]. The major neuropathological manifestations are
extracellular deposition of amyloid plaques and intracellular neurofibrillary tangles [1],
and the hippocampus has been known to be one of the most affected brain structures in
AD [2]. Despite the increasing prevalence of AD, currently available pharmacotherapies
have modest benefits for symptom management and do not prevent neuronal loss and
progressive cognitive deterioration [3]. Thus, novel treatment strategies such as noninvasive
brain stimulation are under active investigation in recent years [3–5].

Low-intensity transcranial focused ultrasound (tFUS) applies acoustic energy to spe-
cific brain regions, with high spatial resolution and penetration depth [6]. It can excite or
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suppress neuronal activity without thermal damage, in addition to transiently opening the
blood–brain barrier (BBB) in targeted areas when combined with microbubble ultrasound
contrast agents (MB) [7]. It has been reported that tFUS-induced oscillations of MB may
lead to amplification of local pressure waves and subsequent stretching of the endothelial
walls [7].

Preclinical studies have suggested that BBB opening using tFUS can be used for
efficient drug delivery in AD [8–10]. In mouse models of AD, anti-amyloid beta antibodies
delivered to the brain after tFUS increased BBB permeability, resulting in reduced plaque
pathology [9]. Moreover, BBB disruption alone reduced amyloid plaque burden and
improved neural plasticity and spatial memory, independent of any therapeutic agents [11].
Recently, a few pilot studies reported the possibilities of tFUS-mediated BBB opening in
small numbers of AD patients [12–15]. However, its efficacy and safety remain to be further
established. In addition, changes in brain function and cognition induced by BBB opening
are also unknown.

We investigated the effects of tFUS to the hippocampus on BBB disruption, the regional
cerebral metabolic rate of glucose (rCMRglu), and cognitive function in patients with AD.
For this ongoing research effort, our previous case report first described the results from the
original four subjects, suggesting potential improvement of rCMRglu and cognition [16].
For this study, we added six additional test subjects to the cohort, such that the present
analysis makes use of data from all ten test subjects—six new ones described here and the
original four from our published report [16].

2. Materials and Methods
2.1. Study Design

After baseline cognitive assessment and brain magnetic resonance imaging (MRI), com-
puted tomography (CT), and positron emission tomography (PET) scans were performed,
low-intensity tFUS was applied to the right hippocampus with intravenous injection of
MB. Immediately and one day after the sonication, MRI scans were acquired to detect
transient BBB opening and closing, respectively. Follow-up neuropsychological tests and
PET scans were conducted within one month (about 20 days and 26 days, respectively) after
the tFUS procedure. All patients were hospitalized one day before the tFUS procedure and
discharged one day after the sonication for safety monitoring. In addition, patients were
followed up in the outpatient clinic to assess delayed adverse events. The study timeline is
presented in Figure 1.
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2.2. Participants

Patients with probable AD were recruited from the neurology outpatient clinic at
Incheon St. Mary’s Hospital (Incheon, South Korea). The clinical diagnosis of AD was
determined based on the Diagnostic and Statistical Manual of Mental Disorders-IV cri-
teria [17] and the National Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders Association criteria [18]. The
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inclusion criteria were patients aged between 65 and 85 years; Mini-Mental State Examina-
tion (MMSE) < 20; Clinical Dementia Rating (CDR) ≥ 1. The exclusion criteria included
neurological or psychiatric disorders other than AD; radiological findings on MRI such as
hemorrhage, infarction, or tumor; contraindications to MB, MRI, or MRI contrast agents.
This study was approved by the Institutional Review Board and registered on Clinical
Research Information Service (KCT0005098). All patients or legal guardians gave written
informed consent.

2.3. Clinical Assessment

The screening consisted of medical history, physical, and neurological evaluations,
electrocardiography, chest X-ray examinations, routine blood test, and brain MRI and CT.
Cognitive function was evaluated with MMSE, CDR, Digit Span Test, Seoul Verbal Learning
Test (SVLT), Contrasting Program, Go/No-Go Test, Controlled Oral Word Association
Test, and Color Word Stroop Test. The neuropsychological tests were performed by a
neuropsychologist who was blinded to the study purpose.

2.4. Baseline Image Acquisition

For the baseline scans, fiducial markers that are visible in both MRI and CT images
(PinPoint, Beekley Corp., Bristol, CT, USA) were attached to four locations of the patient’s
head for image guidance of tFUS [19,20].

Brain MRI scans were conducted using a 3T MR scanner (MAGNETOM Skyra, Siemens,
Enlargen, Germany) equipped with a 32-channel head coil. T1-weighted MPRAGE (repetition
time (TR) = 2.000 ms; echo time (TE) = 2.49 ms; field of view (FOV) = 230 × 230 mm2; matrix
= 256 × 256; flip angle = 9◦; voxel size = 0.9 × 0.9 × 0.9 mm3), fluid-attenuated inversion
recovery (FLAIR; TR = 9.000 ms; TE = 81 ms; inversion time = 2.500; FOV = 224 × 224 mm2;
matrix = 256 × 320; flip angle = 90◦; voxel size = 0.7 × 0.7 × 4.0 mm3), and susceptibility-
weighted imaging (SWI; TR = 27 ms; TE = 20 ms; FOV = 203 × 224 mm2; matrix = 232 ×
256; flip angle = 15◦; voxel size = 0.44 × 0.44 × 1.50 mm3) scans were acquired.

Brain PET–CT images were obtained using a Discovery STE PET–CT scanner (GE
Healthcare, Milwaukee, WI, USA). After intravenous injection of 185–222 MBq of 18F-
fluoro-2-deoxyglucose (FDG), patients waited for approximately 45 min lying in a supine
position with their eyes closed in a room with dimmed light. Transaxial PET (matrix =
128 × 128; pixel size = 1.95 × 1.95 mm2; slice thickness = 3.27 mm) and CT images (FOV
= 250 × 250 mm2; matrix = 512 × 512; pixel size = 0.49 × 0.49 mm2; slice thickness =
0.50 mm) were acquired. PET images were reconstructed with standard filtering methods
and the ordered subset expectation–maximization algorithm. No patients had signifi-
cantly large calcifications within the cranial cavity on CT scans (> 3 mm) that may distort
ultrasound propagation.

2.5. Application of tFUS

An image-guided tFUS system (NS-US100, Neurosona Co., Ltd., Seoul, Korea) was
used to apply tFUS to the right hippocampus. The experimental setup for tFUS sonication
is illustrated in Figure 2. For the image guidance, T1-weighted MPRAGE and CT data were
co-registered. After the patient was seated on a chair, the image space was registered to
the physical space based on the spatial coordinates of the fiducial markers attached to the
head under optical tracking (NDI, Ontario, Canada). A compressible cryogel (Bluemtech,
Wonju, Korea) and ultrasound hydrogel (Aquasonic, Parker Laboratories, Fairfield, NJ,
USA) were used for the sonication transducer. The sonication focus was targeted to the
right hippocampus, while the sonication path was perpendicular to the skull and avoided
the sinus and thick skull segments (> 10 mm). Immediately after the intravenous injection
of MB (Definity, Lantheus Medical Imaging Inc., North Billerica, MA, USA; 10 µL/kg
over one minute), tFUS was delivered using the following parameters (7): fundamental
frequency = 250 kHz; tone-burst duration = 20 ms; pulse repetition frequency = 2 Hz; duty
cycle = 4%; treatment duration = 180 sec; in situ mechanical index = 0.30–0.88.
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Figure 2. (A) Illustration of the experimental setup for transcranial focused ultrasound (tFUS)
sonication to the right hippocampus of patients with Alzheimer’s disease. Image-guided real-time
navigation was performed using the motion-tracking infrared camera which monitors the location
and orientation of the headgear and the FUS transducer through optical trackers. The transducer
is placed over the entry point on the scalp, and the coupling hydrogel is positioned between the
transducer and the scalp. The sonication path is overlaid on the T1-weighted magnetic resonance
imaging (MRI) of a patient. (B) A 3D visualization of four fiducial markers that were placed on the
patient’s head during the acquisition of MRI and computed tomography (CT) scans. The markers
were used as reference coordinates to co-register the patient’s virtual (MRI and CT) and real space
for image-guided tFUS sonication. (C) The acoustic intensity profile of the FUS transducer along
the sonication direction (the left panel; the sonication direction is depicted in an arrow) and from
the transversal section at the focus at a centerline (shown in the right panel). The dotted red lines
indicate the profile bound by the full-width at half-maximum of the peak intensity. Bar = 10 mm. The
measurement was conducted in degassed water. The detailed methods were described in Jeong et al.
2021 [16].

2.6. Follow-Up Image Acquisition

After approximately 30 min from the sonication, follow-up MRI scans were con-
ducted. In addition to FLAIR and SWI, T1-weighted images with two different flip angles
(TR = 4.42 ms, TE = 2.01 ms, FOV = 224 × 224 mm2, matrix = 224 × 224, flip angle = 2◦ or
14◦, voxel size = 1.0 × 1.0 × 3.0 mm3) were acquired. The 3D gradient-echo sequence (3D
CAIPIRINHA-controlled aliasing in parallel imaging results in higher acceleration) was
used to obtain T1 dynamic contrast-enhanced (DCE)–MRI images (TR = 3.32 ms; TE = 1.12
ms; 24 reference lines for both phase and partition encoding using an acceleration factor of
2 × 2 with reordering shift 1; FOV = 224 × 224 mm2; matrix = 224 × 224; flip angle = 9◦;
voxel size = 1.0 × 1.0 × 4.0 mm3; 48 volumes; total scan time = 10 min and 11 s) after
intravenous injection of gadobutrol (Gadovist, Bayer Healthcare, Wayne, NJ, USA) using
an automated injector pump at a dose of 0.1 mL/kg with a flow rate of 2.5 mL/s, followed
by a 25 mL saline flush with a flow rate of 2.0 mL/s. The second follow-up MRI scans were
conducted one day after the sonication using the same sequences. Follow-up FDG–PET
scans were also performed with the same parameters as the baseline scans.

2.7. Image Analysis

Transient BBB opening and closing were assessed with visual inspections of con-
trast enhancement in DCE–MRI images. In addition, independent component analysis
(ICA) was conducted for DCE–MRI data [21]. Using Statistical Parametric Mapping 12
(SPM; https://www.fil.ion.ucl.ac.uk/spm, accessed on 15 November 2021) and FMRIB
Software Library (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, accessed on 15 November 2021),
all volumes of DCE–MRI data were realigned, skull-stripped, and concatenated for each pa-
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tient. The preprocessed individual DCE–MRI data were decomposed into 20 independent
components (IC) using the Infomax algorithm in the Group ICA of fMRI Toolbox (GIFT;
https://trendscenter.org/software/gift, accessed on 15 November 2021). The ICASSO tool-
box repeated the ICA algorithm 20 times to assess the stability of the ICs. For each patient,
ICs with initial signal increases, followed by continuing elevation, were visually checked.

SPM was also used for preprocessing and statistical analysis of FDG–PET data. For
each patient, the PET scan was co-registered to the T1-weighted MPRAGE scan. After
T1-weighted images were normalized to the Montreal Neurological Institute space, the
transformation parameters were also applied to the co-registered PET data. Afterward, PET
images were resliced to 2 mm isotropic resolution and smoothed using an 8 mm full-width
at half-maximum Gaussian kernel. For each voxel, normalized rCMRglu was calculated as
a ratio to global glucose metabolism using proportional scaling. A whole-brain voxel-wise
paired t-test was performed to assess changes in rCMRglu. The statistical threshold was
p < 0.005 with 30 or more voxels.

2.8. Statistical Analysis

Changes in cognitive measures were analyzed with Wilcoxon signed-rank test. Spear-
man’s rank correlations were calculated between significant changes of rCMRglu and
those of cognitive outcomes. Statistical analysis was performed using Stata 17 (StataCorp.,
College Station, TX, USA).

3. Results

A total of 10 patients with probable AD were screened, and 2 patients were excluded
from the study (one patient did not meet inclusion criteria, and one patient withdrew
consent). Eight patients underwent application of tFUS to the right hippocampus and
completed both baseline and follow-up assessments. Their demographic and clinical
characteristics are presented in Table 1.

Table 1. Demographic and clinical characteristics of the study participants.

Characteristics Mean ± SD or n

Age (years) 78.1 ± 2.9
Sex (male/female) 1/7
Education (years) 9.9 ± 6.1

MMSE 5.63 ± 4.57
CDR

1 1
2 6
3 1

CDR-SOB 12.63 ± 4.07
CDR, Clinical Dementia Rating; CDR-SOB, Clinical Dementia Rating-Sum of Boxes; MMSE, Mini-Mental State Examination.

Radiological evidence of contrast enhancement associated with BBB opening was
found in neither the visual inspection nor the ICA of the DCE–MRI data. No adverse
events were observed during the hospitalization and follow-up outpatient visits for 5 to
24 months.

The neuropsychological test results are demonstrated in Table 2. The immediate recall
(z = 2.21, p = 0.03) and recognition memory on the SVLT (z = 2.35, p = 0.02) were significantly
improved after the sonication.

https://trendscenter.org/software/gift
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Table 2. Changes in neuropsychological test results after transcranial focused ultrasound.

Test Baseline
(Mean ± SD)

Change
(Mean ± SD) Test a

MMSE 5.63 ± 4.57 1.00 ± 1.51 z = 1.53, p = 0.13
Digit Span Test: forward 3.00 ± 2.00 0.13 ± 0.64 z = 0.58, p = 0.56

Digit Span Test: backward 0.50 ± 0.93 0.00 ± 0.00
SVLT: immediate recall 0.88 ± 1.46 0.75 ± 0.71 z = 2.21, p = 0.03

SVLT: delayed recall 0.00 ± 0.00 0.00 ± 0.00
SVLT: recognition 11.50 ± 0.53 1.50 ± 1.41 z = 2.35, p = 0.02

Contrasting Program 1.63 ± 3.54 3.00 ± 4.81 z = 1.72, p = 0.09
Go/No-Go Test 1.00 ± 2.83 1.63 ± 3.50 z = 0.74, p = 0.46

COWAT 0.88 ± 1.25 0.00 ± 1.07
CWST: word reading 28.29 ± 41.77 b −5.83 ± 10.57 c z = −1.71, p = 0.09
CWST: color reading 1.71 ± 4.11 b −0.67 ± 1.63 c z = −1.00, p = 0.32

a Wilcoxon signed-rank test. b n = 7. c n = 6; COWAT, Controlled Oral Word Association Test; CWST, Color Word
Stroop Test; MMSE, Mini-Mental State Examination; SVLT, Seoul Verbal Learning Test.

The PET analysis showed an increased level of rCMRglu in the right hippocampus
(t = 4.74; z = 3.07; p = 0.001; cluster size = 46 voxels; coordinates = 28, −14, −26) (Figure 3).
Other brain regions, including the left hippocampus, did not demonstrate significant
changes in rCMRglu. In addition, increases in hippocampal glucose metabolism were
positively associated with the improvement of recognition memory (Spearman’s ρ = 0.77,
p = 0.02) (Figure 4).
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This study investigated the effects of tFUS to the hippocampus on BBB opening, 

rCMRglu, and cognition in AD patients. Although the evidence of BBB opening was not 
observed on DCE–MRI, tFUS significantly enhanced hippocampal glucose metabolism 
and memory without adverse events. Furthermore, increases in rCMRglu in the hippo-
campus were correlated with improvement of recognition memory. Our results suggest 
that tFUS to the hippocampus may improve rCMRglu of the target area and memory in 
AD patients. 

While we cautiously applied tFUS in AD patients due to the scarcity of previous hu-
man studies and potential adverse events such as microhemorrhage, the acoustic pressure 
level used in the current study may be insufficient to induce stable cavitation of MB and 
concurrent opening of the BBB. Consistent with this conjecture, a prior tFUS study re-
ported that a mechanical index greater than 0.96 is required to enhance BBB permeability 
in ovine models when using the same type of MB [21]. Since successful BBB opening is 
dependent on various factors such as sonication parameters, types of MB, and transducer 
configurations, more studies are required to explore and optimize the tFUS protocols in 
humans. 

Recently, there has been a growing interest in secondary effects of tFUS-mediated 
BBB opening. For instance, the inflammatory response decreases in amyloid-beta plaques 

Figure 4. An association between changes in regional cerebral metabolic rate of glucose (rCMRglu) in
the right hippocampus and changes of recognition memory on the Seoul Verbal Learning Test (SVLT)
after transcranial focused ultrasound to the right hippocampus in patients with Alzheimer’s disease.
Normalized rCMRglu was calculated as a ratio to global glucose metabolism.

4. Discussion

This study investigated the effects of tFUS to the hippocampus on BBB opening,
rCMRglu, and cognition in AD patients. Although the evidence of BBB opening was not
observed on DCE–MRI, tFUS significantly enhanced hippocampal glucose metabolism and
memory without adverse events. Furthermore, increases in rCMRglu in the hippocampus
were correlated with improvement of recognition memory. Our results suggest that tFUS
to the hippocampus may improve rCMRglu of the target area and memory in AD patients.

While we cautiously applied tFUS in AD patients due to the scarcity of previous human
studies and potential adverse events such as microhemorrhage, the acoustic pressure
level used in the current study may be insufficient to induce stable cavitation of MB and
concurrent opening of the BBB. Consistent with this conjecture, a prior tFUS study reported
that a mechanical index greater than 0.96 is required to enhance BBB permeability in ovine
models when using the same type of MB [21]. Since successful BBB opening is dependent on
various factors such as sonication parameters, types of MB, and transducer configurations,
more studies are required to explore and optimize the tFUS protocols in humans.

Recently, there has been a growing interest in secondary effects of tFUS-mediated BBB
opening. For instance, the inflammatory response decreases in amyloid-beta plaques and
hyperphosphorylated tau proteins, and changes in regional cerebral blood flow and neural
activity have been suggested [22]. In dementia rat models, tFUS-induced BBB disruption
in the hippocampus increased brain-derived neurotrophic factor (BDNF), early growth
response protein 1 (EGR1), and hippocampal neurogenesis, which lead to improved spatial
memory [23]. Moreover, elevated levels of BDNF are maintained until 18 days after the
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BBB opening [23], indicating the prolonged effects on neurogenesis, synaptic plasticity, and
membrane excitability. Although a transient and reversible reduction in glucose uptake was
observed in normal rat brains immediately after BBB opening by tFUS [24], more long-term
changes in rCMRglu remain unknown. In this study, the application of tFUS with MB did
not open BBB in the hippocampus but significantly enhanced glucose metabolism of the
target area. Our results suggest that MB cavitation at the subthreshold levels may also
have secondary effects independent of detectable BBB opening and, therefore, increase
hippocampal glucose metabolism.

Another possibility would be that tFUS per se increased hippocampal glucose metabolism,
irrespective of BBB opening. It has been demonstrated that tFUS modulates structural and
functional synaptic plasticity. For instance, tFUS alone stimulated neuronal activity and
synchronous oscillations and increased BDNF expression in the mouse hippocampus [25].
Moreover, repeated tFUS to the rat hippocampus over 10 days enhanced density of den-
dritic spines, the expression level of glutamate receptor GluN2A subunit, and frequency of
spontaneous excitatory postsynaptic current [26]. Decreased dendritic spine density and
impaired maintenance of long-term potentiation have been reported in the hippocampus
of AD animal models [27,28].

Although various mechanisms of tFUS have been suggested, intramembrane micro-
cavitation may induce calcium influx and affect functions of ion channels and mechanore-
ceptors, thereby modulating neuronal excitability [29–31]. Several studies indicate that
N-methyl-D-aspartate (NMDA) receptors show mechanosensitivity [32], and membrane
tension can activate NMDA receptors by removing Mg2+ blocking of the channel [33].
Furthermore, increases of BDNF after tFUS upregulate expressions of GluN2A [34]. As the
present study did not include a tFUS without MB group, we cannot determine whether the
observed increases of hippocampal glucose metabolism reflect MB-induced effects or not.

Impairment in verbal learning and memory, one of the earliest clinical manifestations
in AD, largely results from neuropathological deficits in the hippocampus and surrounding
structures. In this study, the patients showed significantly better performances in immediate
recall and recognition memory on the verbal learning test after the application of tFUS.
Furthermore, a significant association was found between improvement in recognition
memory performance and increases in glucose metabolism of the hippocampus. Previous
FDG–PET studies reported that hippocampal hypometabolism in AD is linearly correlated
with deficits in immediate recall and recognition [35,36]. Recognition memory consists
of two components, recollection and familiarity, which may rely on the hippocampus
and perirhinal cortex, respectively [37]. Although both processes are impaired in AD,
recollection is more severely affected than familiarity [38]. Our results suggest that tFUS-
induced enhancement of hippocampal glucose metabolism may have beneficial effects on
memory function in AD patients.

Some limitations should be considered when interpreting our results. First, the lack
of a sham control group precludes definitive conclusions regarding the effects of tFUS
on rCMRglu and cognitive functions. A prior PET study reported that administration of
placebo induced changes in rCMRglu in patients with depression, showing interactions
with placebo effects on brain function [39]. In addition, potential practice effects on the
repeated cognitive tests cannot be ruled out, although our sample consisted of patients
with moderate-to-severe AD. Future studies should compare tFUS with sham treatment to
evaluate the benefits of tFUS. Second, the sample size was small, and most of the patients
had moderate-to-severe AD. Thus, studies including more patients with various severity
are required to generalize our findings. Third, additional clinical evaluations such as
amyloid PET and cerebrospinal fluid or plasma biomarkers would be useful to further
characterize the study participants. Fourth, multiple comparison correction methods were
not used in the statistical analyses due to the small sample size.

In conclusion, the application of low-intensity tFUS to the hippocampus with MB may
enhance hippocampal glucose metabolism and memory function in the short term, even
without BBB opening. With higher spatial resolution and penetration depth than other
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noninvasive neuromodulation techniques, tFUS may be a novel therapeutic option for
AD. Our results are preliminary, and further larger sham-controlled trials are warranted to
confirm the efficacy and safety of tFUS in patients with AD. In addition, longer follow-up
of more than a month and assessments of dose-dependent responses of repeated tFUS will
elucidate long-term benefits and facilitate clinical applications of tFUS in AD.
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